Cargando…
The Pragmatic Classification of Upper Extremity Motion in Neurological Patients: A Primer
Recent advances in wearable sensor technology and machine learning (ML) have allowed for the seamless and objective study of human motion in clinical applications, including Parkinson's disease, and stroke. Using ML to identify salient patterns in sensor data has the potential for widespread ap...
Autores principales: | Parnandi, Avinash, Uddin, Jasim, Nilsen, Dawn M., Schambra, Heidi M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759636/ https://www.ncbi.nlm.nih.gov/pubmed/31620070 http://dx.doi.org/10.3389/fneur.2019.00996 |
Ejemplares similares
-
A Taxonomy of Functional Upper Extremity Motion
por: Schambra, Heidi M., et al.
Publicado: (2019) -
NE-Motion: Visual Analysis of Stroke Patients Using Motion Sensor Networks
por: Contreras, Rodrigo Colnago, et al.
Publicado: (2021) -
PrimSeq: A deep learning-based pipeline to quantitate rehabilitation training
por: Parnandi, Avinash, et al.
Publicado: (2022) -
Data-Driven Quantitation of Movement Abnormality after Stroke
por: Parnandi, Avinash, et al.
Publicado: (2023) -
Mitochondrial Medicine for Neurological Disorders
por: Uddin, Md. Sahab, et al.
Publicado: (2023)