Cargando…

Versatile laser-free trapped-ion entangling gates

We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By transforming into a ‘bichromatic’ interactio...

Descripción completa

Detalles Bibliográficos
Autores principales: Sutherland, R T, Srinivas, R, Burd, S C, Leibfried, D, Wilson, A C, Wineland, D J, Allcock, D T C, Slichter, D H, Libby, S B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759860/
https://www.ncbi.nlm.nih.gov/pubmed/31555055
http://dx.doi.org/10.1088/1367-2630/ab0be5
Descripción
Sumario:We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By transforming into a ‘bichromatic’ interaction picture, we show that either [Formula: see text] or [Formula: see text] geometric phase gates can be performed. The gate basis is determined by selecting the microwave detuning. The driving parameters can be tuned to provide intrinsic dynamical decoupling from qubit frequency fluctuations. The [Formula: see text] gates can be implemented in a novel manner which eases experimental constraints. We present numerical simulations of gate fidelities assuming realistic parameters.