Cargando…
Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network
Methods for estimating the spatial distribution of PM(2.5) concentrations have been developed but have not yet been able to effectively include spatial correlation. We report on the development of a spatial back-propagation neural network (S-BPNN) model designed specifically to make such correlation...
Autores principales: | Wang, Weilin, Zhao, Suli, Jiao, Limin, Taylor, Michael, Zhang, Boen, Xu, Gang, Hou, Haobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760143/ https://www.ncbi.nlm.nih.gov/pubmed/31551510 http://dx.doi.org/10.1038/s41598-019-50177-1 |
Ejemplares similares
-
Day-Ahead PM(2.5) Concentration Forecasting Using WT-VMD Based Decomposition Method and Back Propagation Neural Network Improved by Differential Evolution
por: Wang, Deyun, et al.
Publicado: (2017) -
Spatial Variation of the Relationship between PM(2.5) Concentrations and Meteorological Parameters in China
por: Lin, Gang, et al.
Publicado: (2015) -
Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS
por: Zhang, Ping, et al.
Publicado: (2015) -
A back propagation neural network approach to estimate the glomerular filtration rate in an older population
por: Jiang, Shimin, et al.
Publicado: (2023) -
Spatial Autocorrelation and Temporal Convergence of PM(2.5) Concentrations in Chinese Cities
por: Wang, Huan, et al.
Publicado: (2022)