Cargando…

Polariton hyperspectral imaging of two-dimensional semiconductor crystals

Atomically thin crystals of transition metal dichalcogenides (TMDs) host excitons with strong binding energies and sizable light-matter interactions. Coupled to optical cavities, monolayer TMDs routinely reach the regime of strong light-matter coupling, where excitons and photons admix coherently to...

Descripción completa

Detalles Bibliográficos
Autores principales: Gebhardt, Christian, Förg, Michael, Yamaguchi, Hisato, Bilgin, Ismail, Mohite, Aditya D., Gies, Christopher, Florian, Matthias, Hartmann, Malte, Hänsch, Theodor W., Högele, Alexander, Hunger, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760164/
https://www.ncbi.nlm.nih.gov/pubmed/31551486
http://dx.doi.org/10.1038/s41598-019-50316-8
Descripción
Sumario:Atomically thin crystals of transition metal dichalcogenides (TMDs) host excitons with strong binding energies and sizable light-matter interactions. Coupled to optical cavities, monolayer TMDs routinely reach the regime of strong light-matter coupling, where excitons and photons admix coherently to form polaritons up to room temperature. Here, we explore the two-dimensional nature of TMD polaritons with scanning-cavity hyperspectral imaging. We record a spatial map of polariton properties of extended WS(2) monolayers coupled to a tunable micro cavity in the strong coupling regime, and correlate it with maps of exciton extinction and fluorescence taken from the same flake with the cavity. We find a high level of homogeneity, and show that polariton splitting variations are correlated with intrinsic exciton properties such as oscillator strength and linewidth. Moreover, we observe a deviation from thermal equilibrium in the resonant polariton population, which we ascribe to non-Markovian polariton-phonon coupling. Our measurements reveal a promisingly consistent polariton landscape, and highlight the importance of phonons for future polaritonic devices.