Cargando…

Nitrogen fertilizer regulates soil respiration by altering the organic carbon storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibet Plateau

Soil respiration (Rs) plays a critical role in the global carbon (C) balance, especially in the context of globally increasing nitrogen (N) deposition. However, how N-addition influences C cycle remains unclear. Here, we applied seven levels of N application (0 (N0), 54 (N1), 90 (N2), 126 (N3), 144...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wen, Wang, Jinlan, Li, Xiaolong, Wang, Shilin, Liu, Wenhui, Shi, Shangli, Cao, Wenxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760222/
https://www.ncbi.nlm.nih.gov/pubmed/31551506
http://dx.doi.org/10.1038/s41598-019-50142-y
Descripción
Sumario:Soil respiration (Rs) plays a critical role in the global carbon (C) balance, especially in the context of globally increasing nitrogen (N) deposition. However, how N-addition influences C cycle remains unclear. Here, we applied seven levels of N application (0 (N0), 54 (N1), 90 (N2), 126 (N3), 144 (N4), 180 (N5) and 216 kg N ha(−1) yr(−1) (N6)) to quantify their impacts on Rs and its components (autotrophic respiration (Ra) and heterotrophic respiration (Rh)) and C and N storage in vegetation and soil in alpine meadow on the northeast margin of the Qinghai-Tibetan Plateau. We used a structural equation model (SEM) to explore the relative contributions of C and N storage, soil temperature and soil moisture and their direct and indirect pathways in regulating soil respiration. Our results revealed that the Rs, Ra and Rh, C and N storage in plant, root and soil (0–10 cm and 10–20 cm) all showed initial increases and then tended to decrease at the threshold level of 180 kg N ha(−1) yr(−1). The SEM results indicated that soil temperature had a greater impact on Rs than did volumetric soil moisture. Moreover, SEM also showed that C storage (in root, 0–10 and 10–20 cm soil layers) was the most important factor driving Rs. Furthermore, multiple linear regression model showed that the combined root C storage, 0–10 cm and 10–20 cm soil layer C storage explained 97.4–97.6% variations in Rs; explained 94.5–96% variations in Ra; and explained 96.3–98.1% in Rh. Therefore, the growing season soil respiration and its components can be well predicted by the organic C storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibetan Plateau. Our study reveals the importance of topsoil and root C storage in driving growing season Rs in alpine meadow on the northeast margin of Qinghai-Tibetan Plateau.