Cargando…

Micheliolide ameliorates renal fibrosis by suppressing the Mtdh/BMP/MAPK pathway

Micheliolide (MCL), derived from parthenolide (PTL), is known for its antioxidant and anti-inflammatory effects and has multiple roles in inflammatory diseases and tumours. To investigate its effect on renal disease, we intragastrically administrated DMAMCL, a dimethylamino Michael adduct of MCL for...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Fenfen, Li, Hongyu, Li, Shuting, Wang, Yuxian, Liu, Wenting, Gong, Wangqiu, Yin, Bohui, Chen, Sijia, Zhang, Ying, Luo, Congwei, Zhou, Weidong, Chen, Yihua, Li, Peilin, Huang, Qianyin, Xu, Zhaozhong, Long, Haibo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760645/
https://www.ncbi.nlm.nih.gov/pubmed/30976056
http://dx.doi.org/10.1038/s41374-019-0245-6
Descripción
Sumario:Micheliolide (MCL), derived from parthenolide (PTL), is known for its antioxidant and anti-inflammatory effects and has multiple roles in inflammatory diseases and tumours. To investigate its effect on renal disease, we intragastrically administrated DMAMCL, a dimethylamino Michael adduct of MCL for in vivo use, in two renal fibrosis models–the unilateral ureteral occlusion (UUO) model and an ischaemia-reperfusion injury (IRI) model and used MCL in combination with transforming growth factor beta 1 (TGF-β1) on mouse tubular epithelial cells (mTEC) in vitro. The expression of fibrotic markers (fibronectin and α-SMA) was remarkably reduced, while the expression of the epithelial marker E-cadherin was restored after DMAMCL treatment both in the UUO and IRI mice. MCL function in TGF-β1-induced epithelial-mesenchymal transition (EMT) in mTEC was consistent with the in vivo results. Metadherin (Mtdh) was activated in the fibrotic condition, suggesting that it might be involved in fibrogenesis. Interestingly, we found that while Mtdh was upregulated in the fibrotic condition, DMAMCL/MCL could suppress its expression. The overexpression of Mtdh exerted a pro-fibrotic effect by modulating the BMP/MAPK pathway in mTECs, and MCL could specifically reverse this effect. In conclusion, DMAMCL/MCL treatment represents a novel and effective therapy for renal fibrosis by suppressing the Mtdh/BMP/MAPK pathway.