Cargando…

Linkage disequilibrium and haplotype block patterns in popcorn populations

Linkage disequilibrium (LD) analysis provides information on the evolutionary aspects of populations. Recently, haplotype blocks have been used to increase the power of quantitative trait loci detection in genome-wide association studies and the prediction accuracy of genomic selection. Our objectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrade, Andréa Carla Bastos, Viana, José Marcelo Soriano, Pereira, Helcio Duarte, Pinto, Vitor Batista, Fonseca e Silva, Fabyano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760792/
https://www.ncbi.nlm.nih.gov/pubmed/31553737
http://dx.doi.org/10.1371/journal.pone.0219417
_version_ 1783453918703910912
author Andrade, Andréa Carla Bastos
Viana, José Marcelo Soriano
Pereira, Helcio Duarte
Pinto, Vitor Batista
Fonseca e Silva, Fabyano
author_facet Andrade, Andréa Carla Bastos
Viana, José Marcelo Soriano
Pereira, Helcio Duarte
Pinto, Vitor Batista
Fonseca e Silva, Fabyano
author_sort Andrade, Andréa Carla Bastos
collection PubMed
description Linkage disequilibrium (LD) analysis provides information on the evolutionary aspects of populations. Recently, haplotype blocks have been used to increase the power of quantitative trait loci detection in genome-wide association studies and the prediction accuracy of genomic selection. Our objectives were as follows: to compare the degree of LD, LD decay, and LD decay extent in popcorn populations; to characterize the number and length of haplotype blocks in the populations; and to determine whether maize chromosomes also have a pattern of interspaced regions of high and low rates of recombination. We used a biparental population, a synthetic, and a breeding population, genotyped for approximately 75,000 single nucleotide polymorphisms (SNPs). The sample size ranged from 190 to 192 plants. For the whole-genome LD and haplotype block analyses, we assumed a window of 500 kb. To characterize the block and step patterns of LD in the populations, we constructed LD maps by chromosome, defining a cold spot as a chromosome segment including SNPs with the same LDU position. The LD and haplotype block analyses were also performed at the intragenic level, selecting 12 genes related to zein, starch, cellulose, and fatty acid biosynthesis. The populations with the higher and lower frequencies of |D'| values greater than 0.75 were the biparental (65–74%) and the breeding population (26–58%), respectively. There were slight differences between the populations regarding the average distance for SNPs with |D'| values greater than 0.75 (in the range of approximately 207 to 229 kb). The level of LD expressed by the r(2) values was low in the populations (0.02, 0.04, and 0.04, on average) but comparable to some non-isolated human populations. The frequency of r(2) values greater than 0.75 was lower in the biparental population (0.2–0.5%) and higher in the other populations (0.2–1.6%). The average distance for SNPs with r(2) values greater than 0.75 was much higher in the biparental population (approximately 80 to 126 kb). In the other populations, the ranges were approximately 6 to 19 and 6 to 35 kb. The heatmaps for the regions covered by the first 100 SNPs in each chromosome, in each population (1 to 3.3 Mb, approximately), provided evidence that the comparatively few high r(2) values (close to 1.0) occurred only for SNPs in close proximity, especially in the synthetic and breeding populations. Due to the reduced number of SNPs in the haplotype blocks (2 to 3) in the populations, it is not expected advantage of a haplotype-based association study as well as genomic selection along generations. The results concerning LD decay (rapid decay after 5–10 kb) and LD decay extent (along up to 300 kb) are in the range observed with maize inbred line panels. The LD maps indicate that maize chromosomes had a pattern of regions of extensive LD interspaced with regions of low LD. However, our simulated LD map provides evidence that this pattern can reflect regions with differences in allele frequencies and LD levels (expressed by |D'|) and not regions with high and low rates of recombination.
format Online
Article
Text
id pubmed-6760792
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-67607922019-10-04 Linkage disequilibrium and haplotype block patterns in popcorn populations Andrade, Andréa Carla Bastos Viana, José Marcelo Soriano Pereira, Helcio Duarte Pinto, Vitor Batista Fonseca e Silva, Fabyano PLoS One Research Article Linkage disequilibrium (LD) analysis provides information on the evolutionary aspects of populations. Recently, haplotype blocks have been used to increase the power of quantitative trait loci detection in genome-wide association studies and the prediction accuracy of genomic selection. Our objectives were as follows: to compare the degree of LD, LD decay, and LD decay extent in popcorn populations; to characterize the number and length of haplotype blocks in the populations; and to determine whether maize chromosomes also have a pattern of interspaced regions of high and low rates of recombination. We used a biparental population, a synthetic, and a breeding population, genotyped for approximately 75,000 single nucleotide polymorphisms (SNPs). The sample size ranged from 190 to 192 plants. For the whole-genome LD and haplotype block analyses, we assumed a window of 500 kb. To characterize the block and step patterns of LD in the populations, we constructed LD maps by chromosome, defining a cold spot as a chromosome segment including SNPs with the same LDU position. The LD and haplotype block analyses were also performed at the intragenic level, selecting 12 genes related to zein, starch, cellulose, and fatty acid biosynthesis. The populations with the higher and lower frequencies of |D'| values greater than 0.75 were the biparental (65–74%) and the breeding population (26–58%), respectively. There were slight differences between the populations regarding the average distance for SNPs with |D'| values greater than 0.75 (in the range of approximately 207 to 229 kb). The level of LD expressed by the r(2) values was low in the populations (0.02, 0.04, and 0.04, on average) but comparable to some non-isolated human populations. The frequency of r(2) values greater than 0.75 was lower in the biparental population (0.2–0.5%) and higher in the other populations (0.2–1.6%). The average distance for SNPs with r(2) values greater than 0.75 was much higher in the biparental population (approximately 80 to 126 kb). In the other populations, the ranges were approximately 6 to 19 and 6 to 35 kb. The heatmaps for the regions covered by the first 100 SNPs in each chromosome, in each population (1 to 3.3 Mb, approximately), provided evidence that the comparatively few high r(2) values (close to 1.0) occurred only for SNPs in close proximity, especially in the synthetic and breeding populations. Due to the reduced number of SNPs in the haplotype blocks (2 to 3) in the populations, it is not expected advantage of a haplotype-based association study as well as genomic selection along generations. The results concerning LD decay (rapid decay after 5–10 kb) and LD decay extent (along up to 300 kb) are in the range observed with maize inbred line panels. The LD maps indicate that maize chromosomes had a pattern of regions of extensive LD interspaced with regions of low LD. However, our simulated LD map provides evidence that this pattern can reflect regions with differences in allele frequencies and LD levels (expressed by |D'|) and not regions with high and low rates of recombination. Public Library of Science 2019-09-25 /pmc/articles/PMC6760792/ /pubmed/31553737 http://dx.doi.org/10.1371/journal.pone.0219417 Text en © 2019 Andrade et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Andrade, Andréa Carla Bastos
Viana, José Marcelo Soriano
Pereira, Helcio Duarte
Pinto, Vitor Batista
Fonseca e Silva, Fabyano
Linkage disequilibrium and haplotype block patterns in popcorn populations
title Linkage disequilibrium and haplotype block patterns in popcorn populations
title_full Linkage disequilibrium and haplotype block patterns in popcorn populations
title_fullStr Linkage disequilibrium and haplotype block patterns in popcorn populations
title_full_unstemmed Linkage disequilibrium and haplotype block patterns in popcorn populations
title_short Linkage disequilibrium and haplotype block patterns in popcorn populations
title_sort linkage disequilibrium and haplotype block patterns in popcorn populations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760792/
https://www.ncbi.nlm.nih.gov/pubmed/31553737
http://dx.doi.org/10.1371/journal.pone.0219417
work_keys_str_mv AT andradeandreacarlabastos linkagedisequilibriumandhaplotypeblockpatternsinpopcornpopulations
AT vianajosemarcelosoriano linkagedisequilibriumandhaplotypeblockpatternsinpopcornpopulations
AT pereirahelcioduarte linkagedisequilibriumandhaplotypeblockpatternsinpopcornpopulations
AT pintovitorbatista linkagedisequilibriumandhaplotypeblockpatternsinpopcornpopulations
AT fonsecaesilvafabyano linkagedisequilibriumandhaplotypeblockpatternsinpopcornpopulations