Cargando…
Deep attention networks reveal the rules of collective motion in zebrafish
A variety of simple models has been proposed to understand the collective motion of animals. These models can be insightful but may lack important elements necessary to predict the motion of each individual in the collective. Adding more detail increases predictability but can make models too comple...
Autores principales: | Heras, Francisco J. H., Romero-Ferrero, Francisco, Hinz, Robert C., de Polavieja, Gonzalo G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760814/ https://www.ncbi.nlm.nih.gov/pubmed/31518357 http://dx.doi.org/10.1371/journal.pcbi.1007354 |
Ejemplares similares
-
A study of transfer of information in animal collectives using deep learning tools
por: Romero-Ferrero, Francisco, et al.
Publicado: (2023) -
Learning the rules of collective cell migration using deep attention networks
por: LaChance, Julienne, et al.
Publicado: (2022) -
Adolescents show collective intelligence which can be driven by a geometric mean rule of thumb
por: Ioannou, Christos C., et al.
Publicado: (2018) -
The world according to zebrafish: how neural circuits generate behavior
por: Sumbre, Germán, et al.
Publicado: (2014) -
Signatures of optimal control in pairs of schooling zebrafish
por: Laan, Andress, et al.
Publicado: (2017)