Cargando…
Nlrp1b1 negatively modulates obesity-induced inflammation by promoting IL-18 production
Obesity-induced inflammation, triggered by lipid-mediated activation of the Nlrp3 inflammasome, results in glucose metabolism alterations and type 2 diabetes. This knowledge has been generated using animals deficient for any of the different components of this inflammasome (Caspase-1, Asc or Nlrp3)...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761090/ https://www.ncbi.nlm.nih.gov/pubmed/31554824 http://dx.doi.org/10.1038/s41598-019-49546-7 |
Sumario: | Obesity-induced inflammation, triggered by lipid-mediated activation of the Nlrp3 inflammasome, results in glucose metabolism alterations and type 2 diabetes. This knowledge has been generated using animals deficient for any of the different components of this inflammasome (Caspase-1, Asc or Nlrp3) in the C57BL/6 background. Unlike C57BL/6 mice, which carry allele 2 of the Nlrp1b gene (Nlrp1b2), Balb/c mice that carry allele 1 (Nlrp1b1) are less prone to develop alterations in the glucose metabolism when fed with a high fat diet. However, the molecular bases for these metabolic differences are unknown. Here we show that the Nlrp1b1 allele down regulates the adipose tissue inflammatory response attenuating glucose intolerance and insulin resistance in obese C57BL/mice. Our results indicate that the positive effects of the Nlrp1b1 inflammasome on glucose tolerance and insulin sensitivity involve IL-18-mediated effects on lipolysis, pointing out that differential expression of allelic variants of genes coding for inflammasome components might control susceptibility or resistance to develop diabetes in obese individuals. |
---|