Cargando…
Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers
Chromatin accessibility data can elucidate the developmental origin of cancer cells and reveal the enhancer landscape of key oncogenic transcriptional regulators. We develop a computational strategy called PSIONIC (patient-specific inference of networks informed by chromatin) to combine chromatin ac...
Autores principales: | Osmanbeyoglu, Hatice U., Shimizu, Fumiko, Rynne-Vidal, Angela, Alonso-Curbelo, Direna, Chen, Hsuan-An, Wen, Hannah Y., Yeung, Tsz-Lun, Jelinic, Petar, Razavi, Pedram, Lowe, Scott W., Mok, Samuel C., Chiosis, Gabriela, Levine, Douglas A., Leslie, Christina S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761109/ https://www.ncbi.nlm.nih.gov/pubmed/31554806 http://dx.doi.org/10.1038/s41467-019-12291-6 |
Ejemplares similares
-
scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
por: Burdziak, Cassandra, et al.
Publicado: (2023) -
Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas
por: Lee, Sanghoon, et al.
Publicado: (2022) -
Hyperactivated endolysosomal trafficking in melanoma
por: Alonso-Curbelo, Direna, et al.
Publicado: (2015) -
Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers
por: Tao, Yifeng, et al.
Publicado: (2022) -
Estrogen represses gene expression through reconfiguring chromatin structures
por: Osmanbeyoglu, Hatice Ulku, et al.
Publicado: (2013)