Cargando…
Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere
Among the various architectures of Recurrent Neural Networks, Echo State Networks (ESNs) emerged due to their simplified and inexpensive training procedure. These networks are known to be sensitive to the setting of hyper-parameters, which critically affect their behavior. Results show that their pe...
Autores principales: | Verzelli, Pietro, Alippi, Cesare, Livi, Lorenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761167/ https://www.ncbi.nlm.nih.gov/pubmed/31554855 http://dx.doi.org/10.1038/s41598-019-50158-4 |
Ejemplares similares
-
Multiplex visibility graphs to investigate recurrent neural network dynamics
por: Bianchi, Filippo Maria, et al.
Publicado: (2017) -
Support vector machine with quantile hyper-spheres for pattern classification
por: Chu, Maoxiang, et al.
Publicado: (2019) -
Fusing Swarm Intelligence and Self-Assembly for Optimizing Echo State Networks
por: Martin, Charles E., et al.
Publicado: (2015) -
Tailoring Echo State Networks for Optimal Learning
por: Aceituno, Pau Vilimelis, et al.
Publicado: (2020) -
Deep Echo State Networks in Industrial Applications
por: Dettori, Stefano, et al.
Publicado: (2020)