Cargando…

Soliton superlattices in twisted hexagonal boron nitride

Properties of atomic van der Waals heterostructures are profoundly influenced by interlayer coupling, which critically depends on stacking of the proximal layers. Rotational misalignment or lattice mismatch of the layers gives rise to a periodic modulation of the stacking, the moiré superlattice. Pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, G. X., Wang, H., Jiang, B.-Y., Chen, L. X., Du, Y., Sun, Z. Y., Goldflam, M. D., Frenzel, A. J., Xie, X. M., Fogler, M. M., Basov, D. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761185/
https://www.ncbi.nlm.nih.gov/pubmed/31554808
http://dx.doi.org/10.1038/s41467-019-12327-x
Descripción
Sumario:Properties of atomic van der Waals heterostructures are profoundly influenced by interlayer coupling, which critically depends on stacking of the proximal layers. Rotational misalignment or lattice mismatch of the layers gives rise to a periodic modulation of the stacking, the moiré superlattice. Provided the superlattice period extends over many unit cells, the coupled layers undergo lattice relaxation, leading to the concentration of strain at line defects – solitons - separating large area commensurate domains. We visualize such long-range periodic superstructures in thin crystals of hexagonal boron nitride using atomic-force microscopy and nano-infrared spectroscopy. The solitons form sub-surface hexagonal networks with periods of a few hundred nanometers. We analyze the topography and infrared contrast of these networks to obtain spatial distribution of local strain and its effect on the infrared-active phonons of hBN.