Cargando…
Shape Memory Polyurethane-Based Smart Polymer Substrates for Physiologically Responsive, Dynamic Pressure (Re)Distribution
[Image: see text] Shape memory polymers (SMPs) are an exciting class of stimuli-responsive smart materials that demonstrate reactive and reversible changes in mechanical property, usually by switching between different states due to external stimuli. We report on the development of a polyurethane-ba...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761750/ https://www.ncbi.nlm.nih.gov/pubmed/31572833 http://dx.doi.org/10.1021/acsomega.9b01167 |
Sumario: | [Image: see text] Shape memory polymers (SMPs) are an exciting class of stimuli-responsive smart materials that demonstrate reactive and reversible changes in mechanical property, usually by switching between different states due to external stimuli. We report on the development of a polyurethane-based SMP foam for effective pressure redistribution that demonstrates controllable changes in dynamic pressure redistribution capability at a low transition temperature (∼24 °C)—ideally suited to matching modulations in body contact pressure for dynamic pressure relief (e.g., for alleviation or pressure ulcer effects). The resultant SMP material has been extensively characterized by a series of tests including stress–strain testing, compression testing, dynamic mechanical analysis, optical microscopy, UV–visible absorbance spectroscopy, variable-temperature areal pressure distribution, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry, dynamic thermogravimetric analysis, and (1)H nuclear magnetic resonance spectroscopy. The foam system exhibits high responsivity when tested for plantar pressure modulation with significant potential in pressure ulcers treatment. Efficient pressure redistribution (∼80% reduction in interface pressure), high stress response (∼30% applied stress is stored in fixity and released on recovery), and excellent deformation recovery (∼100%) are demonstrated in addition to significant cycling ability without performance loss. By providing highly effective pressure redistribution and modulation when in contact with the body’s surface, this SMP foam offers novel mechanisms for alleviating the risk of pressure ulcers. |
---|