Cargando…

Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols

[Image: see text] Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferreira, Letícia T., Venancio, Vinícius P., Kawano, Taila, Abrão, Lailah C. C., Tavella, Tatyana A., Almeida, Ludimila D., Pires, Gabriel S., Bilsland, Elizabeth, Sunnerhagen, Per, Azevedo, Luciana, Talcott, Stephen T., Mertens-Talcott, Susanne U., Costa, Fabio T. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761757/
https://www.ncbi.nlm.nih.gov/pubmed/31572864
http://dx.doi.org/10.1021/acsomega.9b02127
_version_ 1783454089435152384
author Ferreira, Letícia T.
Venancio, Vinícius P.
Kawano, Taila
Abrão, Lailah C. C.
Tavella, Tatyana A.
Almeida, Ludimila D.
Pires, Gabriel S.
Bilsland, Elizabeth
Sunnerhagen, Per
Azevedo, Luciana
Talcott, Stephen T.
Mertens-Talcott, Susanne U.
Costa, Fabio T. M.
author_facet Ferreira, Letícia T.
Venancio, Vinícius P.
Kawano, Taila
Abrão, Lailah C. C.
Tavella, Tatyana A.
Almeida, Ludimila D.
Pires, Gabriel S.
Bilsland, Elizabeth
Sunnerhagen, Per
Azevedo, Luciana
Talcott, Stephen T.
Mertens-Talcott, Susanne U.
Costa, Fabio T. M.
author_sort Ferreira, Letícia T.
collection PubMed
description [Image: see text] Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius (“açaí”) originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates.
format Online
Article
Text
id pubmed-6761757
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-67617572019-09-30 Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols Ferreira, Letícia T. Venancio, Vinícius P. Kawano, Taila Abrão, Lailah C. C. Tavella, Tatyana A. Almeida, Ludimila D. Pires, Gabriel S. Bilsland, Elizabeth Sunnerhagen, Per Azevedo, Luciana Talcott, Stephen T. Mertens-Talcott, Susanne U. Costa, Fabio T. M. ACS Omega [Image: see text] Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius (“açaí”) originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates. American Chemical Society 2019-09-13 /pmc/articles/PMC6761757/ /pubmed/31572864 http://dx.doi.org/10.1021/acsomega.9b02127 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Ferreira, Letícia T.
Venancio, Vinícius P.
Kawano, Taila
Abrão, Lailah C. C.
Tavella, Tatyana A.
Almeida, Ludimila D.
Pires, Gabriel S.
Bilsland, Elizabeth
Sunnerhagen, Per
Azevedo, Luciana
Talcott, Stephen T.
Mertens-Talcott, Susanne U.
Costa, Fabio T. M.
Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols
title Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols
title_full Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols
title_fullStr Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols
title_full_unstemmed Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols
title_short Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols
title_sort chemical genomic profiling unveils the in vitro and in vivo antiplasmodial mechanism of açaí (euterpe oleracea mart.) polyphenols
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761757/
https://www.ncbi.nlm.nih.gov/pubmed/31572864
http://dx.doi.org/10.1021/acsomega.9b02127
work_keys_str_mv AT ferreiraleticiat chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT venancioviniciusp chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT kawanotaila chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT abraolailahcc chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT tavellatatyanaa chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT almeidaludimilad chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT piresgabriels chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT bilslandelizabeth chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT sunnerhagenper chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT azevedoluciana chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT talcottstephent chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT mertenstalcottsusanneu chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols
AT costafabiotm chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols