Cargando…
Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols
[Image: see text] Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761757/ https://www.ncbi.nlm.nih.gov/pubmed/31572864 http://dx.doi.org/10.1021/acsomega.9b02127 |
_version_ | 1783454089435152384 |
---|---|
author | Ferreira, Letícia T. Venancio, Vinícius P. Kawano, Taila Abrão, Lailah C. C. Tavella, Tatyana A. Almeida, Ludimila D. Pires, Gabriel S. Bilsland, Elizabeth Sunnerhagen, Per Azevedo, Luciana Talcott, Stephen T. Mertens-Talcott, Susanne U. Costa, Fabio T. M. |
author_facet | Ferreira, Letícia T. Venancio, Vinícius P. Kawano, Taila Abrão, Lailah C. C. Tavella, Tatyana A. Almeida, Ludimila D. Pires, Gabriel S. Bilsland, Elizabeth Sunnerhagen, Per Azevedo, Luciana Talcott, Stephen T. Mertens-Talcott, Susanne U. Costa, Fabio T. M. |
author_sort | Ferreira, Letícia T. |
collection | PubMed |
description | [Image: see text] Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius (“açaí”) originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates. |
format | Online Article Text |
id | pubmed-6761757 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-67617572019-09-30 Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols Ferreira, Letícia T. Venancio, Vinícius P. Kawano, Taila Abrão, Lailah C. C. Tavella, Tatyana A. Almeida, Ludimila D. Pires, Gabriel S. Bilsland, Elizabeth Sunnerhagen, Per Azevedo, Luciana Talcott, Stephen T. Mertens-Talcott, Susanne U. Costa, Fabio T. M. ACS Omega [Image: see text] Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius (“açaí”) originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates. American Chemical Society 2019-09-13 /pmc/articles/PMC6761757/ /pubmed/31572864 http://dx.doi.org/10.1021/acsomega.9b02127 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Ferreira, Letícia T. Venancio, Vinícius P. Kawano, Taila Abrão, Lailah C. C. Tavella, Tatyana A. Almeida, Ludimila D. Pires, Gabriel S. Bilsland, Elizabeth Sunnerhagen, Per Azevedo, Luciana Talcott, Stephen T. Mertens-Talcott, Susanne U. Costa, Fabio T. M. Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols |
title | Chemical Genomic Profiling
Unveils the in Vitro and
in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols |
title_full | Chemical Genomic Profiling
Unveils the in Vitro and
in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols |
title_fullStr | Chemical Genomic Profiling
Unveils the in Vitro and
in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols |
title_full_unstemmed | Chemical Genomic Profiling
Unveils the in Vitro and
in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols |
title_short | Chemical Genomic Profiling
Unveils the in Vitro and
in Vivo Antiplasmodial Mechanism of Açaí (Euterpe oleracea Mart.) Polyphenols |
title_sort | chemical genomic profiling
unveils the in vitro and
in vivo antiplasmodial mechanism of açaí (euterpe oleracea mart.) polyphenols |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761757/ https://www.ncbi.nlm.nih.gov/pubmed/31572864 http://dx.doi.org/10.1021/acsomega.9b02127 |
work_keys_str_mv | AT ferreiraleticiat chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT venancioviniciusp chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT kawanotaila chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT abraolailahcc chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT tavellatatyanaa chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT almeidaludimilad chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT piresgabriels chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT bilslandelizabeth chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT sunnerhagenper chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT azevedoluciana chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT talcottstephent chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT mertenstalcottsusanneu chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols AT costafabiotm chemicalgenomicprofilingunveilstheinvitroandinvivoantiplasmodialmechanismofacaieuterpeoleraceamartpolyphenols |