Cargando…

Interoperable and scalable data analysis with microservices: applications in metabolomics

MOTIVATION: Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Emami Khoonsari, Payam, Moreno, Pablo, Bergmann, Sven, Burman, Joachim, Capuccini, Marco, Carone, Matteo, Cascante, Marta, de Atauri, Pedro, Foguet, Carles, Gonzalez-Beltran, Alejandra N, Hankemeier, Thomas, Haug, Kenneth, He, Sijin, Herman, Stephanie, Johnson, David, Kale, Namrata, Larsson, Anders, Neumann, Steffen, Peters, Kristian, Pireddu, Luca, Rocca-Serra, Philippe, Roger, Pierrick, Rueedi, Rico, Ruttkies, Christoph, Sadawi, Noureddin, Salek, Reza M, Sansone, Susanna-Assunta, Schober, Daniel, Selivanov, Vitaly, Thévenot, Etienne A, van Vliet, Michael, Zanetti, Gianluigi, Steinbeck, Christoph, Kultima, Kim, Spjuth, Ola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761976/
https://www.ncbi.nlm.nih.gov/pubmed/30851093
http://dx.doi.org/10.1093/bioinformatics/btz160
_version_ 1783454133281357824
author Emami Khoonsari, Payam
Moreno, Pablo
Bergmann, Sven
Burman, Joachim
Capuccini, Marco
Carone, Matteo
Cascante, Marta
de Atauri, Pedro
Foguet, Carles
Gonzalez-Beltran, Alejandra N
Hankemeier, Thomas
Haug, Kenneth
He, Sijin
Herman, Stephanie
Johnson, David
Kale, Namrata
Larsson, Anders
Neumann, Steffen
Peters, Kristian
Pireddu, Luca
Rocca-Serra, Philippe
Roger, Pierrick
Rueedi, Rico
Ruttkies, Christoph
Sadawi, Noureddin
Salek, Reza M
Sansone, Susanna-Assunta
Schober, Daniel
Selivanov, Vitaly
Thévenot, Etienne A
van Vliet, Michael
Zanetti, Gianluigi
Steinbeck, Christoph
Kultima, Kim
Spjuth, Ola
author_facet Emami Khoonsari, Payam
Moreno, Pablo
Bergmann, Sven
Burman, Joachim
Capuccini, Marco
Carone, Matteo
Cascante, Marta
de Atauri, Pedro
Foguet, Carles
Gonzalez-Beltran, Alejandra N
Hankemeier, Thomas
Haug, Kenneth
He, Sijin
Herman, Stephanie
Johnson, David
Kale, Namrata
Larsson, Anders
Neumann, Steffen
Peters, Kristian
Pireddu, Luca
Rocca-Serra, Philippe
Roger, Pierrick
Rueedi, Rico
Ruttkies, Christoph
Sadawi, Noureddin
Salek, Reza M
Sansone, Susanna-Assunta
Schober, Daniel
Selivanov, Vitaly
Thévenot, Etienne A
van Vliet, Michael
Zanetti, Gianluigi
Steinbeck, Christoph
Kultima, Kim
Spjuth, Ola
author_sort Emami Khoonsari, Payam
collection PubMed
description MOTIVATION: Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. RESULTS: We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. AVAILABILITY AND IMPLEMENTATION: The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-6761976
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-67619762019-10-02 Interoperable and scalable data analysis with microservices: applications in metabolomics Emami Khoonsari, Payam Moreno, Pablo Bergmann, Sven Burman, Joachim Capuccini, Marco Carone, Matteo Cascante, Marta de Atauri, Pedro Foguet, Carles Gonzalez-Beltran, Alejandra N Hankemeier, Thomas Haug, Kenneth He, Sijin Herman, Stephanie Johnson, David Kale, Namrata Larsson, Anders Neumann, Steffen Peters, Kristian Pireddu, Luca Rocca-Serra, Philippe Roger, Pierrick Rueedi, Rico Ruttkies, Christoph Sadawi, Noureddin Salek, Reza M Sansone, Susanna-Assunta Schober, Daniel Selivanov, Vitaly Thévenot, Etienne A van Vliet, Michael Zanetti, Gianluigi Steinbeck, Christoph Kultima, Kim Spjuth, Ola Bioinformatics Original Papers MOTIVATION: Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. RESULTS: We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. AVAILABILITY AND IMPLEMENTATION: The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2019-10-01 2019-03-09 /pmc/articles/PMC6761976/ /pubmed/30851093 http://dx.doi.org/10.1093/bioinformatics/btz160 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Emami Khoonsari, Payam
Moreno, Pablo
Bergmann, Sven
Burman, Joachim
Capuccini, Marco
Carone, Matteo
Cascante, Marta
de Atauri, Pedro
Foguet, Carles
Gonzalez-Beltran, Alejandra N
Hankemeier, Thomas
Haug, Kenneth
He, Sijin
Herman, Stephanie
Johnson, David
Kale, Namrata
Larsson, Anders
Neumann, Steffen
Peters, Kristian
Pireddu, Luca
Rocca-Serra, Philippe
Roger, Pierrick
Rueedi, Rico
Ruttkies, Christoph
Sadawi, Noureddin
Salek, Reza M
Sansone, Susanna-Assunta
Schober, Daniel
Selivanov, Vitaly
Thévenot, Etienne A
van Vliet, Michael
Zanetti, Gianluigi
Steinbeck, Christoph
Kultima, Kim
Spjuth, Ola
Interoperable and scalable data analysis with microservices: applications in metabolomics
title Interoperable and scalable data analysis with microservices: applications in metabolomics
title_full Interoperable and scalable data analysis with microservices: applications in metabolomics
title_fullStr Interoperable and scalable data analysis with microservices: applications in metabolomics
title_full_unstemmed Interoperable and scalable data analysis with microservices: applications in metabolomics
title_short Interoperable and scalable data analysis with microservices: applications in metabolomics
title_sort interoperable and scalable data analysis with microservices: applications in metabolomics
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761976/
https://www.ncbi.nlm.nih.gov/pubmed/30851093
http://dx.doi.org/10.1093/bioinformatics/btz160
work_keys_str_mv AT emamikhoonsaripayam interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT morenopablo interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT bergmannsven interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT burmanjoachim interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT capuccinimarco interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT caronematteo interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT cascantemarta interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT deatauripedro interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT foguetcarles interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT gonzalezbeltranalejandran interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT hankemeierthomas interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT haugkenneth interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT hesijin interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT hermanstephanie interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT johnsondavid interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT kalenamrata interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT larssonanders interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT neumannsteffen interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT peterskristian interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT piredduluca interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT roccaserraphilippe interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT rogerpierrick interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT rueedirico interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT ruttkieschristoph interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT sadawinoureddin interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT salekrezam interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT sansonesusannaassunta interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT schoberdaniel interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT selivanovvitaly interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT thevenotetiennea interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT vanvlietmichael interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT zanettigianluigi interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT steinbeckchristoph interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT kultimakim interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics
AT spjuthola interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics