Cargando…
Interoperable and scalable data analysis with microservices: applications in metabolomics
MOTIVATION: Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761976/ https://www.ncbi.nlm.nih.gov/pubmed/30851093 http://dx.doi.org/10.1093/bioinformatics/btz160 |
_version_ | 1783454133281357824 |
---|---|
author | Emami Khoonsari, Payam Moreno, Pablo Bergmann, Sven Burman, Joachim Capuccini, Marco Carone, Matteo Cascante, Marta de Atauri, Pedro Foguet, Carles Gonzalez-Beltran, Alejandra N Hankemeier, Thomas Haug, Kenneth He, Sijin Herman, Stephanie Johnson, David Kale, Namrata Larsson, Anders Neumann, Steffen Peters, Kristian Pireddu, Luca Rocca-Serra, Philippe Roger, Pierrick Rueedi, Rico Ruttkies, Christoph Sadawi, Noureddin Salek, Reza M Sansone, Susanna-Assunta Schober, Daniel Selivanov, Vitaly Thévenot, Etienne A van Vliet, Michael Zanetti, Gianluigi Steinbeck, Christoph Kultima, Kim Spjuth, Ola |
author_facet | Emami Khoonsari, Payam Moreno, Pablo Bergmann, Sven Burman, Joachim Capuccini, Marco Carone, Matteo Cascante, Marta de Atauri, Pedro Foguet, Carles Gonzalez-Beltran, Alejandra N Hankemeier, Thomas Haug, Kenneth He, Sijin Herman, Stephanie Johnson, David Kale, Namrata Larsson, Anders Neumann, Steffen Peters, Kristian Pireddu, Luca Rocca-Serra, Philippe Roger, Pierrick Rueedi, Rico Ruttkies, Christoph Sadawi, Noureddin Salek, Reza M Sansone, Susanna-Assunta Schober, Daniel Selivanov, Vitaly Thévenot, Etienne A van Vliet, Michael Zanetti, Gianluigi Steinbeck, Christoph Kultima, Kim Spjuth, Ola |
author_sort | Emami Khoonsari, Payam |
collection | PubMed |
description | MOTIVATION: Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. RESULTS: We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. AVAILABILITY AND IMPLEMENTATION: The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-6761976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-67619762019-10-02 Interoperable and scalable data analysis with microservices: applications in metabolomics Emami Khoonsari, Payam Moreno, Pablo Bergmann, Sven Burman, Joachim Capuccini, Marco Carone, Matteo Cascante, Marta de Atauri, Pedro Foguet, Carles Gonzalez-Beltran, Alejandra N Hankemeier, Thomas Haug, Kenneth He, Sijin Herman, Stephanie Johnson, David Kale, Namrata Larsson, Anders Neumann, Steffen Peters, Kristian Pireddu, Luca Rocca-Serra, Philippe Roger, Pierrick Rueedi, Rico Ruttkies, Christoph Sadawi, Noureddin Salek, Reza M Sansone, Susanna-Assunta Schober, Daniel Selivanov, Vitaly Thévenot, Etienne A van Vliet, Michael Zanetti, Gianluigi Steinbeck, Christoph Kultima, Kim Spjuth, Ola Bioinformatics Original Papers MOTIVATION: Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. RESULTS: We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. AVAILABILITY AND IMPLEMENTATION: The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2019-10-01 2019-03-09 /pmc/articles/PMC6761976/ /pubmed/30851093 http://dx.doi.org/10.1093/bioinformatics/btz160 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Emami Khoonsari, Payam Moreno, Pablo Bergmann, Sven Burman, Joachim Capuccini, Marco Carone, Matteo Cascante, Marta de Atauri, Pedro Foguet, Carles Gonzalez-Beltran, Alejandra N Hankemeier, Thomas Haug, Kenneth He, Sijin Herman, Stephanie Johnson, David Kale, Namrata Larsson, Anders Neumann, Steffen Peters, Kristian Pireddu, Luca Rocca-Serra, Philippe Roger, Pierrick Rueedi, Rico Ruttkies, Christoph Sadawi, Noureddin Salek, Reza M Sansone, Susanna-Assunta Schober, Daniel Selivanov, Vitaly Thévenot, Etienne A van Vliet, Michael Zanetti, Gianluigi Steinbeck, Christoph Kultima, Kim Spjuth, Ola Interoperable and scalable data analysis with microservices: applications in metabolomics |
title | Interoperable and scalable data analysis with microservices: applications in metabolomics |
title_full | Interoperable and scalable data analysis with microservices: applications in metabolomics |
title_fullStr | Interoperable and scalable data analysis with microservices: applications in metabolomics |
title_full_unstemmed | Interoperable and scalable data analysis with microservices: applications in metabolomics |
title_short | Interoperable and scalable data analysis with microservices: applications in metabolomics |
title_sort | interoperable and scalable data analysis with microservices: applications in metabolomics |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761976/ https://www.ncbi.nlm.nih.gov/pubmed/30851093 http://dx.doi.org/10.1093/bioinformatics/btz160 |
work_keys_str_mv | AT emamikhoonsaripayam interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT morenopablo interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT bergmannsven interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT burmanjoachim interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT capuccinimarco interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT caronematteo interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT cascantemarta interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT deatauripedro interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT foguetcarles interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT gonzalezbeltranalejandran interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT hankemeierthomas interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT haugkenneth interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT hesijin interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT hermanstephanie interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT johnsondavid interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT kalenamrata interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT larssonanders interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT neumannsteffen interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT peterskristian interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT piredduluca interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT roccaserraphilippe interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT rogerpierrick interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT rueedirico interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT ruttkieschristoph interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT sadawinoureddin interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT salekrezam interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT sansonesusannaassunta interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT schoberdaniel interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT selivanovvitaly interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT thevenotetiennea interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT vanvlietmichael interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT zanettigianluigi interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT steinbeckchristoph interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT kultimakim interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics AT spjuthola interoperableandscalabledataanalysiswithmicroservicesapplicationsinmetabolomics |