Cargando…
A flexible and generalizable model of online latent-state learning
Many models of classical conditioning fail to describe important phenomena, notably the rapid return of fear after extinction. To address this shortfall, evidence converged on the idea that learning agents rely on latent-state inferences, i.e. an ability to index disparate associations from cues to...
Autores principales: | Cochran, Amy L., Cisler, Josh M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6762208/ https://www.ncbi.nlm.nih.gov/pubmed/31525176 http://dx.doi.org/10.1371/journal.pcbi.1007331 |
Ejemplares similares
-
Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking
por: McGough, Sarah F., et al.
Publicado: (2020) -
On the generalizability of resting-state fMRI machine learning classifiers
por: Huf, Wolfgang, et al.
Publicado: (2014) -
Generalizability of deep learning models for dental image analysis
por: Krois, Joachim, et al.
Publicado: (2021) -
Learning generalizable behaviors from demonstration
por: Rivera, Corban, et al.
Publicado: (2022) -
Generalizability of Total Worker Health(®) Online Training for Young Workers
por: Aryal, Ashamsa, et al.
Publicado: (2019)