Cargando…
SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation
Increasing cell mobility is the basis of tumor invasion and metastasis, and is therefore a therapeutic target for preventing the spread of many types of cancer. Septins are a family of cytoskeletal proteins with GTPase activity, and play a role in many important cellular functions, including cell mi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763430/ https://www.ncbi.nlm.nih.gov/pubmed/31558699 http://dx.doi.org/10.1038/s41419-019-1947-9 |
Sumario: | Increasing cell mobility is the basis of tumor invasion and metastasis, and is therefore a therapeutic target for preventing the spread of many types of cancer. Septins are a family of cytoskeletal proteins with GTPase activity, and play a role in many important cellular functions, including cell migration. SEPT9 isoform 1 protein (SEPT9_i1) has been associated with breast tumor development and the enhancement of cell migration; however, the exact mechanism of how SEPT9_i1 might affect breast cancer progression remains to be elucidated. Here, we report that the expression of SEPT9_i1 positively correlated with paxillin, and both were significantly upregulated in invasive breast cancer tissues of patients with lymph node metastases. Lentivirus-mediated shRNA knockdown of SEPT9 in MCF-7 cells diminished tumor cell migration, focal adhesion (FA) maturation and the expression of β-actin, β-tubulin, Cdc42, RhoA, and Rac, whereas overexpression of SEPT9_i1 in SEPT9-knockdown MCF-7 cells promoted cell migration, FA maturation and relevant protein expression. Furthermore, overexpression of SEPT9_i1 in MCF-7 cells markedly increased FAK/Src/paxillin signaling, at least in part through RhoA/ROCK1 upstream activation. Transcriptome profiling suggested that SEPT9_i1 may directly affect “Focal adhesion” and “Regulation of actin cytoskeleton” signaling mechanisms. Finally, overexpression of SEPT9_i1 markedly enhanced lung metastases in vivo 6 weeks after tumor inoculation. These findings suggest that a mechanism of Septin-9-induced aberrant cancer cell migration is through cytoskeletal regulation and FA modulation, and encourages the use of SEPT9 as novel therapeutic target in the prevention of tumor metastasis. |
---|