Cargando…

Heisenberg-limited single-mode quantum metrology in a superconducting circuit

Two-mode interferometers lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space o...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, W., Wu, Y., Ma, Y., Cai, W., Hu, L., Mu, X., Xu, Y., Chen, Zi-Jie, Wang, H., Song, Y. P., Yuan, H., Zou, C.-L., Duan, L.-M., Sun, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763470/
https://www.ncbi.nlm.nih.gov/pubmed/31558721
http://dx.doi.org/10.1038/s41467-019-12290-7
Descripción
Sumario:Two-mode interferometers lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space of Fock states. Here, we demonstrate a single-mode phase estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the form [Formula: see text] can be generated, manipulated and detected with high fidelities, leading to an experimental phase estimation precision scaling as ∼N(−0.94). A 9.1 dB enhancement of the precision over the SNL at N = 12 is achieved, which is only 1.7 dB away from the HL. Our experimental architecture is hardware efficient and can be combined with quantum error correction techniques to fight against decoherence, and thus promises quantum-enhanced sensing in practical applications.