Cargando…
Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction
Glioblastoma is recognized as World Health Organization (WHO) grade IV glioma with an aggressive growth pattern. The current clinical practice in diagnosis and prognosis of Glioblastoma using MRI involves multiple steps including manual tumor sizing. Accurate identification and segmentation of multi...
Autores principales: | Shboul, Zeina A., Alam, Mahbubul, Vidyaratne, Lasitha, Pei, Linmin, Elbakary, Mohamed I., Iftekharuddin, Khan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763591/ https://www.ncbi.nlm.nih.gov/pubmed/31619949 http://dx.doi.org/10.3389/fnins.2019.00966 |
Ejemplares similares
-
Context aware deep learning for brain tumor segmentation, subtype classification, and survival prediction using radiology images
por: Pei, Linmin, et al.
Publicado: (2020) -
Deep Neural Network Analysis of Pathology Images With Integrated Molecular Data for Enhanced Glioma Classification and Grading
por: Pei, Linmin, et al.
Publicado: (2021) -
Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification at Jefferson Laboratory
por: Vidyaratne, Lasitha, et al.
Publicado: (2022) -
Joint Modeling of RNAseq and Radiomics Data for Glioma Molecular Characterization and Prediction
por: Shboul, Zeina A., et al.
Publicado: (2021) -
Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas using MR Imaging Features
por: Shboul, Zeina A., et al.
Publicado: (2020)