Cargando…

Predicting Alzheimer Disease From Mild Cognitive Impairment With a Deep Belief Network Based on 18F-FDG-PET Images

OBJECTIVE: Accurate diagnosis of early Alzheimer disease (AD) plays a critical role in preventing the progression of memory impairment. We aimed to develop a new deep belief network (DBN) framework using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) metabolic imaging to identify pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Ting, Jiang, Jiehui, Lu, Jiaying, Wang, Min, Zuo, Chuantao, Yu, Zhihua, Yan, Zhuangzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764042/
https://www.ncbi.nlm.nih.gov/pubmed/31552787
http://dx.doi.org/10.1177/1536012119877285
Descripción
Sumario:OBJECTIVE: Accurate diagnosis of early Alzheimer disease (AD) plays a critical role in preventing the progression of memory impairment. We aimed to develop a new deep belief network (DBN) framework using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) metabolic imaging to identify patients at the mild cognitive impairment (MCI) stage with presymptomatic AD and to discriminate them from other patients with MCI. METHODS: 18F-fluorodeoxyglucose-PET images of 109 patients recruited in the ongoing longitudinal Alzheimer’s Disease Neuroimaging Initiative study were included in this analysis. Patients were grouped into 2 classes: (1) stable mild cognitive impairment (n = 62) or (2) progressive mild cognitive impairment (n = 47). Our framework is composed of 4 steps: (1) image preprocessing: normalization and smoothing; (2) identification of regions of interest (ROIs); (3) feature learning using deep neural networks; and (4) classification by support vector machine with 3 kernels. All classification experiments were performed with a 5-fold cross-validation. Accuracy, sensitivity, and specificity were used to validate the results. RESULT: A total of 1103 ROIs were obtained. One hundred features were learned from ROIs using the DBN. The classification accuracy using linear, polynomial, and RBF kernels was 83.9%, 79.2%, and 86.6%, respectively. This method may be a powerful tool for personalized precision medicine in the population with prediction of early AD progression.