Cargando…
Predicting Alzheimer Disease From Mild Cognitive Impairment With a Deep Belief Network Based on 18F-FDG-PET Images
OBJECTIVE: Accurate diagnosis of early Alzheimer disease (AD) plays a critical role in preventing the progression of memory impairment. We aimed to develop a new deep belief network (DBN) framework using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) metabolic imaging to identify pa...
Autores principales: | Shen, Ting, Jiang, Jiehui, Lu, Jiaying, Wang, Min, Zuo, Chuantao, Yu, Zhihua, Yan, Zhuangzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764042/ https://www.ncbi.nlm.nih.gov/pubmed/31552787 http://dx.doi.org/10.1177/1536012119877285 |
Ejemplares similares
-
Radiomics: a novel feature extraction method for brain neuron degeneration disease using (18)F-FDG PET imaging and its implementation for Alzheimer’s disease and mild cognitive impairment
por: Li, Yupeng, et al.
Publicado: (2019) -
Based on Tau PET Radiomics Analysis for the Classification of Alzheimer’s Disease and Mild Cognitive Impairment
por: Jiao, Fangyang, et al.
Publicado: (2023) -
A Novel Metabolic Connectome Method to Predict Progression to Mild Cognitive Impairment
por: Wang, Min, et al.
Publicado: (2020) -
Dual-Model Radiomic Biomarkers Predict Development of Mild Cognitive Impairment Progression to Alzheimer’s Disease
por: Zhou, Hucheng, et al.
Publicado: (2019) -
Study of the Influence of Age in (18)F-FDG PET Images Using a Data-Driven Approach and Its Evaluation in Alzheimer's Disease
por: Jiang, Jiehui, et al.
Publicado: (2018)