Cargando…
Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction
[Image: see text] Organic synthesis is one of the key stumbling blocks in medicinal chemistry. A necessary yet unsolved step in planning synthesis is solving the forward problem: Given reactants and reagents, predict the products. Similar to other work, we treat reaction prediction as a machine tran...
Autores principales: | Schwaller, Philippe, Laino, Teodoro, Gaudin, Théophile, Bolgar, Peter, Hunter, Christopher A., Bekas, Costas, Lee, Alpha A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764164/ https://www.ncbi.nlm.nih.gov/pubmed/31572784 http://dx.doi.org/10.1021/acscentsci.9b00576 |
Ejemplares similares
-
“Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
por: Schwaller, Philippe, et al.
Publicado: (2018) -
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
por: Pesciullesi, Giorgio, et al.
Publicado: (2020) -
Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy
por: Schwaller, Philippe, et al.
Publicado: (2020) -
Extraction of organic chemistry grammar from unsupervised learning of chemical reactions
por: Schwaller, Philippe, et al.
Publicado: (2021) -
Inferring experimental procedures from text-based representations of chemical reactions
por: Vaucher, Alain C., et al.
Publicado: (2021)