Cargando…

Estimating flowering transition dates from status-based phenological observations: a test of methods

The scale of phenological research has expanded due to the digitization of herbarium specimens and volunteer based contributions. These data are status-based, representing the presence or absence of a specific phenophase. Modelling the progress of plant dormancy to growth and reproduction and back t...

Descripción completa

Detalles Bibliográficos
Autor principal: Taylor, Shawn D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764363/
https://www.ncbi.nlm.nih.gov/pubmed/31579602
http://dx.doi.org/10.7717/peerj.7720
_version_ 1783454365831397376
author Taylor, Shawn D.
author_facet Taylor, Shawn D.
author_sort Taylor, Shawn D.
collection PubMed
description The scale of phenological research has expanded due to the digitization of herbarium specimens and volunteer based contributions. These data are status-based, representing the presence or absence of a specific phenophase. Modelling the progress of plant dormancy to growth and reproduction and back to dormancy requires estimating the transition dates from these status-based observations. There are several methods available for this ranging from statistical moments using the day of year to newly introduced methods using concepts from other fields. Comparing the proficiency of different estimators is difficult since true transition dates are rarely known. Here I use a recently released dataset of in-situ flowering observations of the perennial forb Echinacea angustifolia. In this dataset, due to high sampling frequency and unique physiology, the transition dates of onset, peak, and end of flowering are known to within 3 days. I used a Monte Carlo analysis to test eight different estimators across two scales using a range of sample sizes and proportion of flowering presence observations. I evaluated the estimators accuracy in predicting the onset, peak, and end of flowering at the population level, and predicting onset and end of flowering for individual plants. Overall, a method using a Weibull distribution performed the best for population level onset and end estimates, but other estimators may be more appropriate when there is a large amount of absence observations relative to presence observations. For individual estimates a method using the midway point between the first flower presence and most prior flower absence, within 7 days, is the best option as long as the restriction does not limit the final sample size. Otherwise, the Weibull method is adequate for individual estimates as well. These methods allow practitioners to effectively utilize the large amount of status-based phenological observations currently available.
format Online
Article
Text
id pubmed-6764363
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-67643632019-10-02 Estimating flowering transition dates from status-based phenological observations: a test of methods Taylor, Shawn D. PeerJ Agricultural Science The scale of phenological research has expanded due to the digitization of herbarium specimens and volunteer based contributions. These data are status-based, representing the presence or absence of a specific phenophase. Modelling the progress of plant dormancy to growth and reproduction and back to dormancy requires estimating the transition dates from these status-based observations. There are several methods available for this ranging from statistical moments using the day of year to newly introduced methods using concepts from other fields. Comparing the proficiency of different estimators is difficult since true transition dates are rarely known. Here I use a recently released dataset of in-situ flowering observations of the perennial forb Echinacea angustifolia. In this dataset, due to high sampling frequency and unique physiology, the transition dates of onset, peak, and end of flowering are known to within 3 days. I used a Monte Carlo analysis to test eight different estimators across two scales using a range of sample sizes and proportion of flowering presence observations. I evaluated the estimators accuracy in predicting the onset, peak, and end of flowering at the population level, and predicting onset and end of flowering for individual plants. Overall, a method using a Weibull distribution performed the best for population level onset and end estimates, but other estimators may be more appropriate when there is a large amount of absence observations relative to presence observations. For individual estimates a method using the midway point between the first flower presence and most prior flower absence, within 7 days, is the best option as long as the restriction does not limit the final sample size. Otherwise, the Weibull method is adequate for individual estimates as well. These methods allow practitioners to effectively utilize the large amount of status-based phenological observations currently available. PeerJ Inc. 2019-09-24 /pmc/articles/PMC6764363/ /pubmed/31579602 http://dx.doi.org/10.7717/peerj.7720 Text en ©2019 Taylor https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Agricultural Science
Taylor, Shawn D.
Estimating flowering transition dates from status-based phenological observations: a test of methods
title Estimating flowering transition dates from status-based phenological observations: a test of methods
title_full Estimating flowering transition dates from status-based phenological observations: a test of methods
title_fullStr Estimating flowering transition dates from status-based phenological observations: a test of methods
title_full_unstemmed Estimating flowering transition dates from status-based phenological observations: a test of methods
title_short Estimating flowering transition dates from status-based phenological observations: a test of methods
title_sort estimating flowering transition dates from status-based phenological observations: a test of methods
topic Agricultural Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764363/
https://www.ncbi.nlm.nih.gov/pubmed/31579602
http://dx.doi.org/10.7717/peerj.7720
work_keys_str_mv AT taylorshawnd estimatingfloweringtransitiondatesfromstatusbasedphenologicalobservationsatestofmethods