Cargando…
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
Machine learning (ML) models, such as artificial neural networks, have emerged as a complement to high-throughput screening, enabling characterization of new compounds in seconds instead of hours. The promise of ML models to enable large-scale chemical space exploration can only be realized if it is...
Autores principales: | Janet, Jon Paul, Duan, Chenru, Yang, Tzuhsiung, Nandy, Aditya, Kulik, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764470/ https://www.ncbi.nlm.nih.gov/pubmed/31588334 http://dx.doi.org/10.1039/c9sc02298h |
Ejemplares similares
-
Seeing Is Believing: Experimental Spin States from
Machine Learning Model Structure Predictions
por: Taylor, Michael G., et al.
Publicado: (2020) -
Accurate Multiobjective Design in a Space of Millions
of Transition Metal Complexes with Neural-Network-Driven Efficient
Global Optimization
por: Janet, Jon Paul, et al.
Publicado: (2020) -
New Strategies for Direct Methane-to-Methanol Conversion
from Active Learning Exploration of 16 Million Catalysts
por: Nandy, Aditya, et al.
Publicado: (2022) -
Low-cost machine learning prediction of excited state properties of iridium-centered phosphors
por: Terrones, Gianmarco G., et al.
Publicado: (2023) -
Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost
por: Duan, Chenru, et al.
Publicado: (2022)