Cargando…

A quantitative uncertainty metric controls error in neural network-driven chemical discovery

Machine learning (ML) models, such as artificial neural networks, have emerged as a complement to high-throughput screening, enabling characterization of new compounds in seconds instead of hours. The promise of ML models to enable large-scale chemical space exploration can only be realized if it is...

Descripción completa

Detalles Bibliográficos
Autores principales: Janet, Jon Paul, Duan, Chenru, Yang, Tzuhsiung, Nandy, Aditya, Kulik, Heather J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764470/
https://www.ncbi.nlm.nih.gov/pubmed/31588334
http://dx.doi.org/10.1039/c9sc02298h

Ejemplares similares