Cargando…
Predicting gene regulatory interactions based on spatial gene expression data and deep learning
Reverse engineering of gene regulatory networks (GRNs) is a central task in systems biology. Most of the existing methods for GRN inference rely on gene co-expression analysis or TF-target binding information, where the determination of co-expression is often unreliable merely based on gene expressi...
Autores principales: | Yang, Yang, Fang, Qingwei, Shen, Hong-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764701/ https://www.ncbi.nlm.nih.gov/pubmed/31527870 http://dx.doi.org/10.1371/journal.pcbi.1007324 |
Ejemplares similares
-
Nonparametric identification of regulatory interactions from spatial and temporal gene expression data
por: Aswani, Anil, et al.
Publicado: (2010) -
Breast cancer histopathology image-based gene expression prediction using spatial transcriptomics data and deep learning
por: Rahaman, Md Mamunur, et al.
Publicado: (2023) -
Assessment of deep learning and transfer learning for cancer prediction based on gene expression data
por: Hanczar, Blaise, et al.
Publicado: (2022) -
Mapping the topography of spatial gene expression with interpretable deep learning
por: Chitra, Uthsav, et al.
Publicado: (2023) -
Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure
por: Zrimec, Jan, et al.
Publicado: (2020)