Cargando…

Selection and gene flow shape niche-associated variation in pheromone response

From quorum sensing in bacteria to pheromone signaling in social insects, chemical communication mediates interactions among individuals in a local population. In Caenorhabditis elegans, ascaroside pheromones can dictate local population density, in which high levels of pheromones inhibit the reprod...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Daehan, Zdraljevic, Stefan, Cook, Daniel E., Frézal, Lise, Hsu, Jung-Chen, Sterken, Mark G., Riksen, Joost A.G., Wang, John, Kammenga, Jan E., Braendle, Christian, Félix, Marie-Anne, Schroeder, Frank C., Andersen, Erik C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764921/
https://www.ncbi.nlm.nih.gov/pubmed/31548647
http://dx.doi.org/10.1038/s41559-019-0982-3
Descripción
Sumario:From quorum sensing in bacteria to pheromone signaling in social insects, chemical communication mediates interactions among individuals in a local population. In Caenorhabditis elegans, ascaroside pheromones can dictate local population density, in which high levels of pheromones inhibit the reproductive maturation of individuals. Little is known about how natural genetic diversity affects the pheromone responses of individuals from diverse habitats. Here, we show that a niche-associated variation in pheromone receptor genes contributes to natural differences in pheromone responses. We identified putative loss-of-function deletions that impair duplicated pheromone receptor genes (srg-36 and srg-37), which were shown previously to be lost in population-dense laboratory cultures. A common natural deletion in srg-37 arose recently from a single ancestral population that spread throughout the world and underlies reduced pheromone sensitivity across the global C. elegans population. We found that many local populations harbor individuals with wild-type or a deletion allele of srg-37, suggesting that balancing selection has maintained the recent variation in this pheromone receptor gene. The two srg-37 genotypes are associated with niche diversity underlying boom-and-bust population dynamics. We hypothesize that human activities likely contributed to the gene flow and balancing selection of srg-37 variation through facilitating migration of species and providing favorable niche for recently arose srg-37 deletion.