Cargando…
A bimodal soft electronic skin for tactile and touchless interaction in real time
The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic mic...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764954/ https://www.ncbi.nlm.nih.gov/pubmed/31562319 http://dx.doi.org/10.1038/s41467-019-12303-5 |
_version_ | 1783454471573995520 |
---|---|
author | Ge, Jin Wang, Xu Drack, Michael Volkov, Oleksii Liang, Mo Cañón Bermúdez, Gilbert Santiago Illing, Rico Wang, Changan Zhou, Shengqiang Fassbender, Jürgen Kaltenbrunner, Martin Makarov, Denys |
author_facet | Ge, Jin Wang, Xu Drack, Michael Volkov, Oleksii Liang, Mo Cañón Bermúdez, Gilbert Santiago Illing, Rico Wang, Changan Zhou, Shengqiang Fassbender, Jürgen Kaltenbrunner, Martin Makarov, Denys |
author_sort | Ge, Jin |
collection | PubMed |
description | The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic microelectromechanical system able to transduce both tactile—via mechanical pressure—and touchless—via magnetic fields—stimulations simultaneously. The magnetic microelectromechanical system separates electric signals from tactile and touchless interactions into two different regions, allowing the electronic skins to unambiguously distinguish the two modes in real time. Besides, its inherent magnetic specificity overcomes the interference from non-relevant objects and enables signal-programmable interactions. Ultimately, the magnetic microelectromechanical system enables complex interplay with physical objects enhanced with virtual content data in augmented reality, robotics, and medical applications. |
format | Online Article Text |
id | pubmed-6764954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67649542019-09-30 A bimodal soft electronic skin for tactile and touchless interaction in real time Ge, Jin Wang, Xu Drack, Michael Volkov, Oleksii Liang, Mo Cañón Bermúdez, Gilbert Santiago Illing, Rico Wang, Changan Zhou, Shengqiang Fassbender, Jürgen Kaltenbrunner, Martin Makarov, Denys Nat Commun Article The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic microelectromechanical system able to transduce both tactile—via mechanical pressure—and touchless—via magnetic fields—stimulations simultaneously. The magnetic microelectromechanical system separates electric signals from tactile and touchless interactions into two different regions, allowing the electronic skins to unambiguously distinguish the two modes in real time. Besides, its inherent magnetic specificity overcomes the interference from non-relevant objects and enables signal-programmable interactions. Ultimately, the magnetic microelectromechanical system enables complex interplay with physical objects enhanced with virtual content data in augmented reality, robotics, and medical applications. Nature Publishing Group UK 2019-09-27 /pmc/articles/PMC6764954/ /pubmed/31562319 http://dx.doi.org/10.1038/s41467-019-12303-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Ge, Jin Wang, Xu Drack, Michael Volkov, Oleksii Liang, Mo Cañón Bermúdez, Gilbert Santiago Illing, Rico Wang, Changan Zhou, Shengqiang Fassbender, Jürgen Kaltenbrunner, Martin Makarov, Denys A bimodal soft electronic skin for tactile and touchless interaction in real time |
title | A bimodal soft electronic skin for tactile and touchless interaction in real time |
title_full | A bimodal soft electronic skin for tactile and touchless interaction in real time |
title_fullStr | A bimodal soft electronic skin for tactile and touchless interaction in real time |
title_full_unstemmed | A bimodal soft electronic skin for tactile and touchless interaction in real time |
title_short | A bimodal soft electronic skin for tactile and touchless interaction in real time |
title_sort | bimodal soft electronic skin for tactile and touchless interaction in real time |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764954/ https://www.ncbi.nlm.nih.gov/pubmed/31562319 http://dx.doi.org/10.1038/s41467-019-12303-5 |
work_keys_str_mv | AT gejin abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT wangxu abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT drackmichael abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT volkovoleksii abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT liangmo abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT canonbermudezgilbertsantiago abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT illingrico abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT wangchangan abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT zhoushengqiang abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT fassbenderjurgen abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT kaltenbrunnermartin abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT makarovdenys abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT gejin bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT wangxu bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT drackmichael bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT volkovoleksii bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT liangmo bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT canonbermudezgilbertsantiago bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT illingrico bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT wangchangan bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT zhoushengqiang bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT fassbenderjurgen bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT kaltenbrunnermartin bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime AT makarovdenys bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime |