Cargando…

A bimodal soft electronic skin for tactile and touchless interaction in real time

The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Jin, Wang, Xu, Drack, Michael, Volkov, Oleksii, Liang, Mo, Cañón Bermúdez, Gilbert Santiago, Illing, Rico, Wang, Changan, Zhou, Shengqiang, Fassbender, Jürgen, Kaltenbrunner, Martin, Makarov, Denys
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764954/
https://www.ncbi.nlm.nih.gov/pubmed/31562319
http://dx.doi.org/10.1038/s41467-019-12303-5
_version_ 1783454471573995520
author Ge, Jin
Wang, Xu
Drack, Michael
Volkov, Oleksii
Liang, Mo
Cañón Bermúdez, Gilbert Santiago
Illing, Rico
Wang, Changan
Zhou, Shengqiang
Fassbender, Jürgen
Kaltenbrunner, Martin
Makarov, Denys
author_facet Ge, Jin
Wang, Xu
Drack, Michael
Volkov, Oleksii
Liang, Mo
Cañón Bermúdez, Gilbert Santiago
Illing, Rico
Wang, Changan
Zhou, Shengqiang
Fassbender, Jürgen
Kaltenbrunner, Martin
Makarov, Denys
author_sort Ge, Jin
collection PubMed
description The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic microelectromechanical system able to transduce both tactile—via mechanical pressure—and touchless—via magnetic fields—stimulations simultaneously. The magnetic microelectromechanical system separates electric signals from tactile and touchless interactions into two different regions, allowing the electronic skins to unambiguously distinguish the two modes in real time. Besides, its inherent magnetic specificity overcomes the interference from non-relevant objects and enables signal-programmable interactions. Ultimately, the magnetic microelectromechanical system enables complex interplay with physical objects enhanced with virtual content data in augmented reality, robotics, and medical applications.
format Online
Article
Text
id pubmed-6764954
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67649542019-09-30 A bimodal soft electronic skin for tactile and touchless interaction in real time Ge, Jin Wang, Xu Drack, Michael Volkov, Oleksii Liang, Mo Cañón Bermúdez, Gilbert Santiago Illing, Rico Wang, Changan Zhou, Shengqiang Fassbender, Jürgen Kaltenbrunner, Martin Makarov, Denys Nat Commun Article The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic microelectromechanical system able to transduce both tactile—via mechanical pressure—and touchless—via magnetic fields—stimulations simultaneously. The magnetic microelectromechanical system separates electric signals from tactile and touchless interactions into two different regions, allowing the electronic skins to unambiguously distinguish the two modes in real time. Besides, its inherent magnetic specificity overcomes the interference from non-relevant objects and enables signal-programmable interactions. Ultimately, the magnetic microelectromechanical system enables complex interplay with physical objects enhanced with virtual content data in augmented reality, robotics, and medical applications. Nature Publishing Group UK 2019-09-27 /pmc/articles/PMC6764954/ /pubmed/31562319 http://dx.doi.org/10.1038/s41467-019-12303-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ge, Jin
Wang, Xu
Drack, Michael
Volkov, Oleksii
Liang, Mo
Cañón Bermúdez, Gilbert Santiago
Illing, Rico
Wang, Changan
Zhou, Shengqiang
Fassbender, Jürgen
Kaltenbrunner, Martin
Makarov, Denys
A bimodal soft electronic skin for tactile and touchless interaction in real time
title A bimodal soft electronic skin for tactile and touchless interaction in real time
title_full A bimodal soft electronic skin for tactile and touchless interaction in real time
title_fullStr A bimodal soft electronic skin for tactile and touchless interaction in real time
title_full_unstemmed A bimodal soft electronic skin for tactile and touchless interaction in real time
title_short A bimodal soft electronic skin for tactile and touchless interaction in real time
title_sort bimodal soft electronic skin for tactile and touchless interaction in real time
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764954/
https://www.ncbi.nlm.nih.gov/pubmed/31562319
http://dx.doi.org/10.1038/s41467-019-12303-5
work_keys_str_mv AT gejin abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT wangxu abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT drackmichael abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT volkovoleksii abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT liangmo abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT canonbermudezgilbertsantiago abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT illingrico abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT wangchangan abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT zhoushengqiang abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT fassbenderjurgen abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT kaltenbrunnermartin abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT makarovdenys abimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT gejin bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT wangxu bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT drackmichael bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT volkovoleksii bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT liangmo bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT canonbermudezgilbertsantiago bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT illingrico bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT wangchangan bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT zhoushengqiang bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT fassbenderjurgen bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT kaltenbrunnermartin bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime
AT makarovdenys bimodalsoftelectronicskinfortactileandtouchlessinteractioninrealtime