Cargando…

Improved Osseointegration of a TiNbSn Alloy with a Low Young’s Modulus Treated with Anodic Oxidation

Ti6Al4V alloy orthopedic implants are widely used as Ti6Al4V alloy is a biocompatible material and resistant to corrosion. However, Ti6Al4V alloy has higher Young’s modulus compared with human bone. The difference of elastic modulus between bone and titanium alloy may evoke clinical problems because...

Descripción completa

Detalles Bibliográficos
Autores principales: Kunii, Tomonori, Mori, Yu, Tanaka, Hidetatsu, Kogure, Atsushi, Kamimura, Masayuki, Mori, Naoko, Hanada, Shuji, Masahashi, Naoya, Itoi, Eiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764973/
https://www.ncbi.nlm.nih.gov/pubmed/31562376
http://dx.doi.org/10.1038/s41598-019-50581-7
Descripción
Sumario:Ti6Al4V alloy orthopedic implants are widely used as Ti6Al4V alloy is a biocompatible material and resistant to corrosion. However, Ti6Al4V alloy has higher Young’s modulus compared with human bone. The difference of elastic modulus between bone and titanium alloy may evoke clinical problems because of stress shielding. To resolve this, we previously developed a TiNbSn alloy offering low Young’s modulus and improved biocompatibility. In the present study, the effects of sulfuric acid anodic oxidation on the osseointegration of TiNbSn alloy were assessed. The apatite formation was evaluated with Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy analyses. The biocompatibility of TiNbSN alloy was evaluated in experimental animal models using pull-out tests and quantitative histological analyses. The results of the surface analyses indicated that sulfuric anodic oxidation induced abundant superficial apatite formation of the TiNbSn alloy disks and rods, with a 5.1-µm-thick oxide layer and submicron-sized pores. In vivo, treated rods showed increased mature lamellar bone formation and higher failure loads compared with untreated rods. Overall, our findings indicate that anodic oxidation with sulfuric acid may help to improve the biocompatibility of TiNbSn alloys for osseointegration.