Cargando…
LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data
A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixtur...
Autores principales: | Wan, Changlin, Chang, Wennan, Zhang, Yu, Shah, Fenil, Lu, Xiaoyu, Zang, Yong, Zhang, Anru, Cao, Sha, Fishel, Melissa L, Ma, Qin, Zhang, Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765121/ https://www.ncbi.nlm.nih.gov/pubmed/31372654 http://dx.doi.org/10.1093/nar/gkz655 |
Ejemplares similares
-
A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data
por: Alghamdi, Norah, et al.
Publicado: (2021) -
RIPSeeker: a statistical package for identifying protein-associated transcripts from RIP-seq experiments
por: Li, Yue, et al.
Publicado: (2013) -
Analysis of strand-specific RNA-seq data using machine learning reveals the structures of transcription units in Clostridium thermocellum
por: Chou, Wen-Chi, et al.
Publicado: (2015) -
Statistical analysis of genetic interactions in Tn-Seq data
por: DeJesus, Michael A., et al.
Publicado: (2017) -
Linnorm: improved statistical analysis for single cell RNA-seq expression data
por: Yip, Shun H., et al.
Publicado: (2017)