Cargando…

Rickettsia conorii O antigen is the target of bactericidal Weil–Felix antibodies

Rickettsial diseases have long been diagnosed with serum antibodies cross-reactive against Proteus vulgaris (Weil–Felix reaction). Although Weil–Felix antibodies are associated with the development of immunity, their rickettsial target and contribution to disease pathogenesis are not established. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hwan Keun, Premaratna, Ranjan, Missiakas, Dominique M., Schneewind, Olaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765297/
https://www.ncbi.nlm.nih.gov/pubmed/31413191
http://dx.doi.org/10.1073/pnas.1911922116
Descripción
Sumario:Rickettsial diseases have long been diagnosed with serum antibodies cross-reactive against Proteus vulgaris (Weil–Felix reaction). Although Weil–Felix antibodies are associated with the development of immunity, their rickettsial target and contribution to disease pathogenesis are not established. Here, we developed a transposon for insertional mutagenesis of Rickettsia conorii, isolating variants defective for replication in cultured cells and in spotted fever pathogenesis. Mutations in the polysaccharide synthesis operon (pso) abolish lipopolysaccharide O-antigen synthesis and Weil–Felix serology and alter outer-membrane protein assembly. Unlike wild-type R. conorii, pso mutants cannot elicit bactericidal antibodies that bind O antigen. The pso operon is conserved among rickettsial pathogens, suggesting that bactericidal antibodies targeting O antigen may generate universal immunity that could be exploited to develop vaccines against rickettsial diseases.