Cargando…
Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital
This paper presents a study based on data analysis of the sarcopenia level in older adults. Sarcopenia is a prevalent pathology in adults of around 50 years of age, whereby the muscle mass decreases by 1 to 2% a year, and muscle strength experiences an annual decrease of 1.5% between 50 and 60 years...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765933/ https://www.ncbi.nlm.nih.gov/pubmed/31489909 http://dx.doi.org/10.3390/ijerph16183275 |
_version_ | 1783454599808548864 |
---|---|
author | Castillo-Olea, Cristián García-Zapirain Soto, Begonya Carballo Lozano, Christian Zuñiga, Clemente |
author_facet | Castillo-Olea, Cristián García-Zapirain Soto, Begonya Carballo Lozano, Christian Zuñiga, Clemente |
author_sort | Castillo-Olea, Cristián |
collection | PubMed |
description | This paper presents a study based on data analysis of the sarcopenia level in older adults. Sarcopenia is a prevalent pathology in adults of around 50 years of age, whereby the muscle mass decreases by 1 to 2% a year, and muscle strength experiences an annual decrease of 1.5% between 50 and 60 years of age, subsequently increasing by 3% each year. The World Health Organisation estimates that 5–13% of individuals of between 60 and 70 years of age and 11–50% of persons of 80 years of age or over have sarcopenia. This study was conducted with 166 patients and 99 variables. Demographic data was compiled including age, gender, place of residence, schooling, marital status, level of education, income, profession, and financial support from the State of Baja California, and biochemical parameters such as glycemia, cholesterolemia, and triglyceridemia were determined. A total of 166 patients took part in the study, with an average age of 77.24 years. The purpose of the study was to provide an automatic classifier of sarcopenia level in older adults using artificial intelligence in addition to identifying the weight of each variable used in the study. We used machine learning techniques in this work, in which 10 classifiers were employed to assess the variables and determine which would provide the best results, namely, Nearest Neighbors (3), Linear SVM (Support Vector Machines) (C = 0.025), RBF (Radial Basis Function) SVM (gamma = 2, C = 1), Gaussian Process (RBF (1.0)), Decision Tree (max_depth = 3), Random Forest (max_depth=3, n_estimators = 10), MPL (Multilayer Perceptron) (alpha = 1), AdaBoost, Gaussian Naive Bayes, and QDA (Quadratic Discriminant Analysis). Feature selection determined by the mean for the variable ranking suggests that Age, Systolic Arterial Hypertension (HAS), Mini Nutritional Assessment (MNA), Number of chronic diseases (ECNumber), and Sodium are the five most important variables in determining the sarcopenia level, and are thus of great importance prior to establishing any treatment or preventive measure. Analysis of the relationships existing between the presence of the variables and classifiers used in moderate and severe sarcopenia revealed that the sarcopenia level using the RBF SVM classifier with Age, HAS, MNA, ECNumber, and Sodium variables has 82′5 accuracy, a 90′2 F1, and 82′8 precision. |
format | Online Article Text |
id | pubmed-6765933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67659332019-09-30 Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital Castillo-Olea, Cristián García-Zapirain Soto, Begonya Carballo Lozano, Christian Zuñiga, Clemente Int J Environ Res Public Health Article This paper presents a study based on data analysis of the sarcopenia level in older adults. Sarcopenia is a prevalent pathology in adults of around 50 years of age, whereby the muscle mass decreases by 1 to 2% a year, and muscle strength experiences an annual decrease of 1.5% between 50 and 60 years of age, subsequently increasing by 3% each year. The World Health Organisation estimates that 5–13% of individuals of between 60 and 70 years of age and 11–50% of persons of 80 years of age or over have sarcopenia. This study was conducted with 166 patients and 99 variables. Demographic data was compiled including age, gender, place of residence, schooling, marital status, level of education, income, profession, and financial support from the State of Baja California, and biochemical parameters such as glycemia, cholesterolemia, and triglyceridemia were determined. A total of 166 patients took part in the study, with an average age of 77.24 years. The purpose of the study was to provide an automatic classifier of sarcopenia level in older adults using artificial intelligence in addition to identifying the weight of each variable used in the study. We used machine learning techniques in this work, in which 10 classifiers were employed to assess the variables and determine which would provide the best results, namely, Nearest Neighbors (3), Linear SVM (Support Vector Machines) (C = 0.025), RBF (Radial Basis Function) SVM (gamma = 2, C = 1), Gaussian Process (RBF (1.0)), Decision Tree (max_depth = 3), Random Forest (max_depth=3, n_estimators = 10), MPL (Multilayer Perceptron) (alpha = 1), AdaBoost, Gaussian Naive Bayes, and QDA (Quadratic Discriminant Analysis). Feature selection determined by the mean for the variable ranking suggests that Age, Systolic Arterial Hypertension (HAS), Mini Nutritional Assessment (MNA), Number of chronic diseases (ECNumber), and Sodium are the five most important variables in determining the sarcopenia level, and are thus of great importance prior to establishing any treatment or preventive measure. Analysis of the relationships existing between the presence of the variables and classifiers used in moderate and severe sarcopenia revealed that the sarcopenia level using the RBF SVM classifier with Age, HAS, MNA, ECNumber, and Sodium variables has 82′5 accuracy, a 90′2 F1, and 82′8 precision. MDPI 2019-09-06 2019-09 /pmc/articles/PMC6765933/ /pubmed/31489909 http://dx.doi.org/10.3390/ijerph16183275 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Castillo-Olea, Cristián García-Zapirain Soto, Begonya Carballo Lozano, Christian Zuñiga, Clemente Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital |
title | Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital |
title_full | Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital |
title_fullStr | Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital |
title_full_unstemmed | Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital |
title_short | Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital |
title_sort | automatic classification of sarcopenia level in older adults: a case study at tijuana general hospital |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765933/ https://www.ncbi.nlm.nih.gov/pubmed/31489909 http://dx.doi.org/10.3390/ijerph16183275 |
work_keys_str_mv | AT castillooleacristian automaticclassificationofsarcopenialevelinolderadultsacasestudyattijuanageneralhospital AT garciazapirainsotobegonya automaticclassificationofsarcopenialevelinolderadultsacasestudyattijuanageneralhospital AT carballolozanochristian automaticclassificationofsarcopenialevelinolderadultsacasestudyattijuanageneralhospital AT zunigaclemente automaticclassificationofsarcopenialevelinolderadultsacasestudyattijuanageneralhospital |