Cargando…

Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters

Micromechanical fatigue lifetime predictions, in particular for the high cycle fatigue regime, require an appropriate modelling of mean stress effects in order to account for lifetime reducing positive mean stresses. Focus of this micromechanical study is the comparison of three selected fatigue ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Schäfer, Benjamin Josef, Sonnweber-Ribic, Petra, ul Hassan, Hamad, Hartmaier, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766011/
https://www.ncbi.nlm.nih.gov/pubmed/31487915
http://dx.doi.org/10.3390/ma12182852
_version_ 1783454618955546624
author Schäfer, Benjamin Josef
Sonnweber-Ribic, Petra
ul Hassan, Hamad
Hartmaier, Alexander
author_facet Schäfer, Benjamin Josef
Sonnweber-Ribic, Petra
ul Hassan, Hamad
Hartmaier, Alexander
author_sort Schäfer, Benjamin Josef
collection PubMed
description Micromechanical fatigue lifetime predictions, in particular for the high cycle fatigue regime, require an appropriate modelling of mean stress effects in order to account for lifetime reducing positive mean stresses. Focus of this micromechanical study is the comparison of three selected fatigue indicator parameters (FIPs), with respect to their applicability to different total strain ratios. In this work, investigations are performed on the modelling and prediction of the fatigue crack initiation life of the martensitic high-strength steel SAE 4150 for two different total strain ratios. First, multiple martensitic statistical volume elements (SVEs) are generated by multiscale Voronoi tessellations. Micromechanical fatigue simulations are then performed on these SVEs by means of a crystal plasticity model to obtain microstructure dependent fatigue responses. In order to account for the material specific fatigue damage zone, a non-local homogenisation scheme for the FIPs is introduced for lath martensitic microstructures. The numerical results of the different non-local FIPs are compared with experimental fatigue crack initiation results for two different total strain ratios. It is concluded that the multiaxial fatigue criteria proposed by Fatemi-Socie is superior for predicting fatigue crack initiation life to the energy dissipation criteria and the accumulated plastic slip criteria for the investigated total strain ratios.
format Online
Article
Text
id pubmed-6766011
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67660112019-09-30 Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters Schäfer, Benjamin Josef Sonnweber-Ribic, Petra ul Hassan, Hamad Hartmaier, Alexander Materials (Basel) Article Micromechanical fatigue lifetime predictions, in particular for the high cycle fatigue regime, require an appropriate modelling of mean stress effects in order to account for lifetime reducing positive mean stresses. Focus of this micromechanical study is the comparison of three selected fatigue indicator parameters (FIPs), with respect to their applicability to different total strain ratios. In this work, investigations are performed on the modelling and prediction of the fatigue crack initiation life of the martensitic high-strength steel SAE 4150 for two different total strain ratios. First, multiple martensitic statistical volume elements (SVEs) are generated by multiscale Voronoi tessellations. Micromechanical fatigue simulations are then performed on these SVEs by means of a crystal plasticity model to obtain microstructure dependent fatigue responses. In order to account for the material specific fatigue damage zone, a non-local homogenisation scheme for the FIPs is introduced for lath martensitic microstructures. The numerical results of the different non-local FIPs are compared with experimental fatigue crack initiation results for two different total strain ratios. It is concluded that the multiaxial fatigue criteria proposed by Fatemi-Socie is superior for predicting fatigue crack initiation life to the energy dissipation criteria and the accumulated plastic slip criteria for the investigated total strain ratios. MDPI 2019-09-04 /pmc/articles/PMC6766011/ /pubmed/31487915 http://dx.doi.org/10.3390/ma12182852 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schäfer, Benjamin Josef
Sonnweber-Ribic, Petra
ul Hassan, Hamad
Hartmaier, Alexander
Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters
title Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters
title_full Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters
title_fullStr Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters
title_full_unstemmed Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters
title_short Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters
title_sort micromechanical modelling of the influence of strain ratio on fatigue crack initiation in a martensitic steel-a comparison of different fatigue indicator parameters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766011/
https://www.ncbi.nlm.nih.gov/pubmed/31487915
http://dx.doi.org/10.3390/ma12182852
work_keys_str_mv AT schaferbenjaminjosef micromechanicalmodellingoftheinfluenceofstrainratioonfatiguecrackinitiationinamartensiticsteelacomparisonofdifferentfatigueindicatorparameters
AT sonnweberribicpetra micromechanicalmodellingoftheinfluenceofstrainratioonfatiguecrackinitiationinamartensiticsteelacomparisonofdifferentfatigueindicatorparameters
AT ulhassanhamad micromechanicalmodellingoftheinfluenceofstrainratioonfatiguecrackinitiationinamartensiticsteelacomparisonofdifferentfatigueindicatorparameters
AT hartmaieralexander micromechanicalmodellingoftheinfluenceofstrainratioonfatiguecrackinitiationinamartensiticsteelacomparisonofdifferentfatigueindicatorparameters