Cargando…

Effect of the Forming Zone Length on Helical Rolling Processes for Manufacturing Steel Balls

This paper begins with a brief overview of the methods for producing balls. It then discusses the rolling processes for producing balls in helical passes. Next, a method for designing tools for helical rolling (HR) is described. Six different cases of rolling using tools with helical passes of diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Gontarz, Andrzej, Tomczak, Janusz, Pater, Zbigniew, Bulzak, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766242/
https://www.ncbi.nlm.nih.gov/pubmed/31505851
http://dx.doi.org/10.3390/ma12182917
Descripción
Sumario:This paper begins with a brief overview of the methods for producing balls. It then discusses the rolling processes for producing balls in helical passes. Next, a method for designing tools for helical rolling (HR) is described. Six different cases of rolling using tools with helical passes of different lengths are modeled by the finite element method (FEM). The simulations are performed with the use of Simufact Forming version 13.3. Based on the 3D simulations, the distributions of effective strain, damage criterion, and temperature, as well as the variations in loads and torques, are determined. This study also predicts the rate and manner of wear of the helical tools, depending on the tool design. As a result, it has been found that an increased length of the helical forming passes is advantageous in terms of tool service life. It has also been found that excessive elongation of the forming zone is not cost-effective.