Cargando…

Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization

With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the s...

Descripción completa

Detalles Bibliográficos
Autores principales: Dec, Bartłomiej, Sobaszek, Michał, Jaramillo-Botero, Andrés, Goddard, William Andrew, Bogdanowicz, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766244/
https://www.ncbi.nlm.nih.gov/pubmed/31505785
http://dx.doi.org/10.3390/ma12182910
Descripción
Sumario:With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the structure of chemical molecules or crystals and their interaction. In developing a new generation of biosensors, understanding the nature of functional linkers, antibodies, and ligands become essential. In this study, we used DFT to model a bulk boron-doped diamond slab, modified by a functional linker and a surrogate proteins ligand. DTF calculations enable the prediction of electronic transport properties in an electrochemical sensor setup, composed of a boron-doped diamond electrode functionalized by 4-amino benzoic acids and a target surrogated protein-ligand for influenza. Electron conduction pathways and other signatures associated with the detection and measurement of the target analyte are revealed.