Cargando…
Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766244/ https://www.ncbi.nlm.nih.gov/pubmed/31505785 http://dx.doi.org/10.3390/ma12182910 |
_version_ | 1783454676876787712 |
---|---|
author | Dec, Bartłomiej Sobaszek, Michał Jaramillo-Botero, Andrés Goddard, William Andrew Bogdanowicz, Robert |
author_facet | Dec, Bartłomiej Sobaszek, Michał Jaramillo-Botero, Andrés Goddard, William Andrew Bogdanowicz, Robert |
author_sort | Dec, Bartłomiej |
collection | PubMed |
description | With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the structure of chemical molecules or crystals and their interaction. In developing a new generation of biosensors, understanding the nature of functional linkers, antibodies, and ligands become essential. In this study, we used DFT to model a bulk boron-doped diamond slab, modified by a functional linker and a surrogate proteins ligand. DTF calculations enable the prediction of electronic transport properties in an electrochemical sensor setup, composed of a boron-doped diamond electrode functionalized by 4-amino benzoic acids and a target surrogated protein-ligand for influenza. Electron conduction pathways and other signatures associated with the detection and measurement of the target analyte are revealed. |
format | Online Article Text |
id | pubmed-6766244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67662442019-09-30 Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization Dec, Bartłomiej Sobaszek, Michał Jaramillo-Botero, Andrés Goddard, William Andrew Bogdanowicz, Robert Materials (Basel) Article With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the structure of chemical molecules or crystals and their interaction. In developing a new generation of biosensors, understanding the nature of functional linkers, antibodies, and ligands become essential. In this study, we used DFT to model a bulk boron-doped diamond slab, modified by a functional linker and a surrogate proteins ligand. DTF calculations enable the prediction of electronic transport properties in an electrochemical sensor setup, composed of a boron-doped diamond electrode functionalized by 4-amino benzoic acids and a target surrogated protein-ligand for influenza. Electron conduction pathways and other signatures associated with the detection and measurement of the target analyte are revealed. MDPI 2019-09-09 /pmc/articles/PMC6766244/ /pubmed/31505785 http://dx.doi.org/10.3390/ma12182910 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dec, Bartłomiej Sobaszek, Michał Jaramillo-Botero, Andrés Goddard, William Andrew Bogdanowicz, Robert Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization |
title | Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization |
title_full | Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization |
title_fullStr | Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization |
title_full_unstemmed | Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization |
title_short | Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization |
title_sort | ligand-modified boron-doped diamond surface: dft insights into the electronic properties of biofunctionalization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766244/ https://www.ncbi.nlm.nih.gov/pubmed/31505785 http://dx.doi.org/10.3390/ma12182910 |
work_keys_str_mv | AT decbartłomiej ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization AT sobaszekmichał ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization AT jaramilloboteroandres ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization AT goddardwilliamandrew ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization AT bogdanowiczrobert ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization |