Cargando…

Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization

With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the s...

Descripción completa

Detalles Bibliográficos
Autores principales: Dec, Bartłomiej, Sobaszek, Michał, Jaramillo-Botero, Andrés, Goddard, William Andrew, Bogdanowicz, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766244/
https://www.ncbi.nlm.nih.gov/pubmed/31505785
http://dx.doi.org/10.3390/ma12182910
_version_ 1783454676876787712
author Dec, Bartłomiej
Sobaszek, Michał
Jaramillo-Botero, Andrés
Goddard, William Andrew
Bogdanowicz, Robert
author_facet Dec, Bartłomiej
Sobaszek, Michał
Jaramillo-Botero, Andrés
Goddard, William Andrew
Bogdanowicz, Robert
author_sort Dec, Bartłomiej
collection PubMed
description With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the structure of chemical molecules or crystals and their interaction. In developing a new generation of biosensors, understanding the nature of functional linkers, antibodies, and ligands become essential. In this study, we used DFT to model a bulk boron-doped diamond slab, modified by a functional linker and a surrogate proteins ligand. DTF calculations enable the prediction of electronic transport properties in an electrochemical sensor setup, composed of a boron-doped diamond electrode functionalized by 4-amino benzoic acids and a target surrogated protein-ligand for influenza. Electron conduction pathways and other signatures associated with the detection and measurement of the target analyte are revealed.
format Online
Article
Text
id pubmed-6766244
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67662442019-09-30 Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization Dec, Bartłomiej Sobaszek, Michał Jaramillo-Botero, Andrés Goddard, William Andrew Bogdanowicz, Robert Materials (Basel) Article With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the structure of chemical molecules or crystals and their interaction. In developing a new generation of biosensors, understanding the nature of functional linkers, antibodies, and ligands become essential. In this study, we used DFT to model a bulk boron-doped diamond slab, modified by a functional linker and a surrogate proteins ligand. DTF calculations enable the prediction of electronic transport properties in an electrochemical sensor setup, composed of a boron-doped diamond electrode functionalized by 4-amino benzoic acids and a target surrogated protein-ligand for influenza. Electron conduction pathways and other signatures associated with the detection and measurement of the target analyte are revealed. MDPI 2019-09-09 /pmc/articles/PMC6766244/ /pubmed/31505785 http://dx.doi.org/10.3390/ma12182910 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dec, Bartłomiej
Sobaszek, Michał
Jaramillo-Botero, Andrés
Goddard, William Andrew
Bogdanowicz, Robert
Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
title Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
title_full Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
title_fullStr Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
title_full_unstemmed Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
title_short Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
title_sort ligand-modified boron-doped diamond surface: dft insights into the electronic properties of biofunctionalization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766244/
https://www.ncbi.nlm.nih.gov/pubmed/31505785
http://dx.doi.org/10.3390/ma12182910
work_keys_str_mv AT decbartłomiej ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization
AT sobaszekmichał ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization
AT jaramilloboteroandres ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization
AT goddardwilliamandrew ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization
AT bogdanowiczrobert ligandmodifiedborondopeddiamondsurfacedftinsightsintotheelectronicpropertiesofbiofunctionalization