Cargando…
MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE
Wire ropes used in various applications such as elevators and cranes to safely carry heavy weights are vulnerable to breakage or cross-sectional loss caused by the external environment. Such damage can pose a serious risk to the safety of the entire structure because damage under tensile force rapid...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766265/ https://www.ncbi.nlm.nih.gov/pubmed/31500253 http://dx.doi.org/10.3390/ma12182894 |
_version_ | 1783454682026344448 |
---|---|
author | Kim, Ju-Won Tola, Kassahun Demissie Tran, Dai Quoc Park, Seunghee |
author_facet | Kim, Ju-Won Tola, Kassahun Demissie Tran, Dai Quoc Park, Seunghee |
author_sort | Kim, Ju-Won |
collection | PubMed |
description | Wire ropes used in various applications such as elevators and cranes to safely carry heavy weights are vulnerable to breakage or cross-sectional loss caused by the external environment. Such damage can pose a serious risk to the safety of the entire structure because damage under tensile force rapidly expands due to concentration of stress. In this study, the magnetic flux leakage (MFL) method was applied to diagnose cuts, corrosion, and compression damage in wire ropes. Magnetic flux signals were measured by scanning damaged wire rope specimens using a multi-channel sensor head and a compact data acquisition system. A series of signal-processing procedures, including the Hilbert transform-based enveloping process, was applied to reduce noise and improve the resolution of signals. The possibility of diagnosing several types of damage was verified using enveloped magnetic flux signals. The characteristics of the MFL signals according to each damage type were then analyzed by comparing the extracted damage indices for each damage type. For automated damage type classification, a support vector machine (SVM)-based classifier was trained using the extracted damage indices. Finally, damage types were automatically classified as cutting and other damages using the trained SVM classifier. |
format | Online Article Text |
id | pubmed-6766265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67662652019-09-30 MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE Kim, Ju-Won Tola, Kassahun Demissie Tran, Dai Quoc Park, Seunghee Materials (Basel) Article Wire ropes used in various applications such as elevators and cranes to safely carry heavy weights are vulnerable to breakage or cross-sectional loss caused by the external environment. Such damage can pose a serious risk to the safety of the entire structure because damage under tensile force rapidly expands due to concentration of stress. In this study, the magnetic flux leakage (MFL) method was applied to diagnose cuts, corrosion, and compression damage in wire ropes. Magnetic flux signals were measured by scanning damaged wire rope specimens using a multi-channel sensor head and a compact data acquisition system. A series of signal-processing procedures, including the Hilbert transform-based enveloping process, was applied to reduce noise and improve the resolution of signals. The possibility of diagnosing several types of damage was verified using enveloped magnetic flux signals. The characteristics of the MFL signals according to each damage type were then analyzed by comparing the extracted damage indices for each damage type. For automated damage type classification, a support vector machine (SVM)-based classifier was trained using the extracted damage indices. Finally, damage types were automatically classified as cutting and other damages using the trained SVM classifier. MDPI 2019-09-07 /pmc/articles/PMC6766265/ /pubmed/31500253 http://dx.doi.org/10.3390/ma12182894 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Ju-Won Tola, Kassahun Demissie Tran, Dai Quoc Park, Seunghee MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE |
title | MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE |
title_full | MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE |
title_fullStr | MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE |
title_full_unstemmed | MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE |
title_short | MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE |
title_sort | mfl-based local damage diagnosis and svm-based damage type classification for wire rope nde |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766265/ https://www.ncbi.nlm.nih.gov/pubmed/31500253 http://dx.doi.org/10.3390/ma12182894 |
work_keys_str_mv | AT kimjuwon mflbasedlocaldamagediagnosisandsvmbaseddamagetypeclassificationforwireropende AT tolakassahundemissie mflbasedlocaldamagediagnosisandsvmbaseddamagetypeclassificationforwireropende AT trandaiquoc mflbasedlocaldamagediagnosisandsvmbaseddamagetypeclassificationforwireropende AT parkseunghee mflbasedlocaldamagediagnosisandsvmbaseddamagetypeclassificationforwireropende |