Cargando…
MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for Wire Rope NDE
Wire ropes used in various applications such as elevators and cranes to safely carry heavy weights are vulnerable to breakage or cross-sectional loss caused by the external environment. Such damage can pose a serious risk to the safety of the entire structure because damage under tensile force rapid...
Autores principales: | Kim, Ju-Won, Tola, Kassahun Demissie, Tran, Dai Quoc, Park, Seunghee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766265/ https://www.ncbi.nlm.nih.gov/pubmed/31500253 http://dx.doi.org/10.3390/ma12182894 |
Ejemplares similares
-
Wire Rope Defect Recognition Method Based on MFL Signal Analysis and 1D-CNNs
por: Liu, Shiwei, et al.
Publicado: (2023) -
Quantitative Identification of Internal and External Wire Rope Damage Based on VMD-AWT Noise Reduction and PSO-SVM
por: Tian, Jie, et al.
Publicado: (2022) -
Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation
por: Kim, Ju-Won, et al.
Publicado: (2018) -
Artificial Intelligence-Based Bolt Loosening Diagnosis Using Deep Learning Algorithms for Laser Ultrasonic Wave Propagation Data
por: Tran, Dai Quoc, et al.
Publicado: (2020) -
Improving the Ability of a Laser Ultrasonic Wave-Based Detection of Damage on the Curved Surface of a Pipe Using a Deep Learning Technique
por: Yu, Byoungjoon, et al.
Publicado: (2021)