Cargando…
Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718
The advantage of selective laser melting (SLM) is its high accuracy and geometrical flexibility. Because the maximum size of the components is limited by the process chamber, possibilities must be found to combine several parts manufactured by SLM. An application where this is necessary, is, for exa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766275/ https://www.ncbi.nlm.nih.gov/pubmed/31547448 http://dx.doi.org/10.3390/ma12182967 |
_version_ | 1783454684461137920 |
---|---|
author | Jokisch, Torsten Marko, Angelina Gook, Sergej Üstündag, Ömer Gumenyuk, Andrey Rethmeier, Michael |
author_facet | Jokisch, Torsten Marko, Angelina Gook, Sergej Üstündag, Ömer Gumenyuk, Andrey Rethmeier, Michael |
author_sort | Jokisch, Torsten |
collection | PubMed |
description | The advantage of selective laser melting (SLM) is its high accuracy and geometrical flexibility. Because the maximum size of the components is limited by the process chamber, possibilities must be found to combine several parts manufactured by SLM. An application where this is necessary, is, for example, the components of gas turbines, such as burners or oil return pipes, and inserts, which can be joined by circumferential welds. However, only a few investigations to date have been carried out for the welding of components produced by SLM. The object of this paper is, therefore, to investigate the feasibility of laser beam welding for joining SLM tube connections made of nickel-based alloys. For this purpose, SLM-manufactured Inconel 625 and Inconel 718 tubes were welded with a Yb:YAG disk laser and subsequently examined for residual stresses and defects. The results showed that the welds had no significant influence on the residual stresses. A good weld quality could be achieved in the seam circumference. However, pores and pore nests were found in the final overlap area, which meant that no continuous good welding quality could be accomplished. Pore formation was presumably caused by capillary instabilities when the laser power was ramped out. |
format | Online Article Text |
id | pubmed-6766275 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67662752019-09-30 Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718 Jokisch, Torsten Marko, Angelina Gook, Sergej Üstündag, Ömer Gumenyuk, Andrey Rethmeier, Michael Materials (Basel) Article The advantage of selective laser melting (SLM) is its high accuracy and geometrical flexibility. Because the maximum size of the components is limited by the process chamber, possibilities must be found to combine several parts manufactured by SLM. An application where this is necessary, is, for example, the components of gas turbines, such as burners or oil return pipes, and inserts, which can be joined by circumferential welds. However, only a few investigations to date have been carried out for the welding of components produced by SLM. The object of this paper is, therefore, to investigate the feasibility of laser beam welding for joining SLM tube connections made of nickel-based alloys. For this purpose, SLM-manufactured Inconel 625 and Inconel 718 tubes were welded with a Yb:YAG disk laser and subsequently examined for residual stresses and defects. The results showed that the welds had no significant influence on the residual stresses. A good weld quality could be achieved in the seam circumference. However, pores and pore nests were found in the final overlap area, which meant that no continuous good welding quality could be accomplished. Pore formation was presumably caused by capillary instabilities when the laser power was ramped out. MDPI 2019-09-12 /pmc/articles/PMC6766275/ /pubmed/31547448 http://dx.doi.org/10.3390/ma12182967 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jokisch, Torsten Marko, Angelina Gook, Sergej Üstündag, Ömer Gumenyuk, Andrey Rethmeier, Michael Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718 |
title | Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718 |
title_full | Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718 |
title_fullStr | Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718 |
title_full_unstemmed | Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718 |
title_short | Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718 |
title_sort | laser welding of slm-manufactured tubes made of in625 and in718 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766275/ https://www.ncbi.nlm.nih.gov/pubmed/31547448 http://dx.doi.org/10.3390/ma12182967 |
work_keys_str_mv | AT jokischtorsten laserweldingofslmmanufacturedtubesmadeofin625andin718 AT markoangelina laserweldingofslmmanufacturedtubesmadeofin625andin718 AT gooksergej laserweldingofslmmanufacturedtubesmadeofin625andin718 AT ustundagomer laserweldingofslmmanufacturedtubesmadeofin625andin718 AT gumenyukandrey laserweldingofslmmanufacturedtubesmadeofin625andin718 AT rethmeiermichael laserweldingofslmmanufacturedtubesmadeofin625andin718 |