Cargando…
On-Chip Miniaturized Bandpass Filter Using GaAs-Based Integrated Passive Device Technology For L-Band Application
In this work, a miniaturized bandpass filter (BPF) constructed of two spiral intertwined inductors and a central capacitor, with several interdigital structures, was designed and fabricated using integrated passive device (IPD) technology on a GaAs wafer. Five air-bridge structures were introduced t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766296/ https://www.ncbi.nlm.nih.gov/pubmed/31546884 http://dx.doi.org/10.3390/ma12183045 |
Sumario: | In this work, a miniaturized bandpass filter (BPF) constructed of two spiral intertwined inductors and a central capacitor, with several interdigital structures, was designed and fabricated using integrated passive device (IPD) technology on a GaAs wafer. Five air-bridge structures were introduced to enhance the mutual inductive effect and form the differential geometry of the outer inductors. In addition, the design of the differential inductor combined with the centrally embedded capacitor results in a compact construction with the overall size of 0.037λ(0) × 0.019λ(0) (1537.7 × 800 μm(2)) where λ(0) is the wavelength of the central frequency. For the accuracy evolution of the equivalent circuit, the frequency-dependent lumped elements of the proposed BPF was analyzed and modeled through the segment method, mutual inductance approach, and simulated scattering parameters (S-parameters). Afterward, the BPF was fabricated using GaAs-based IPD technology and a 16-step manufacture flow was accounted for in detail. Finally, the fabricated BPF was wire-bonded with Au wires and packaged onto a printed circuit board for radio-frequency performance measurements. The measured results indicate that the implemented BPF possesses a center frequency operating at 2 GHz with the insertion losses of 0.38 dB and the return losses of 40 dB, respectively, and an ultrawide passband was achieved with a 3-dB fraction bandwidth of 72.53%, as well. In addition, a transmission zero is located at 5.32 GHz. Moreover, the variation of the resonant frequency with different inductor turns and metal thicknesses was analyzed through the simulation results, demonstrating good controllability of the proposed BPF. |
---|