Cargando…

Design of a Low Scattering Metasurface for Stealth Applications

The design of a metasurface with low radar cross section (RCS) property is presented in this paper. The low scattering of the metasurface is achieved by applying the artificial magnetic conductor (AMC) unit cells in three different configurations. Two different AMC unit cells with an effective phase...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Tayyab Ali, Li, Jianxing, Chen, Juan, Raza, Muhammad Usman, Zhang, Anxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766352/
https://www.ncbi.nlm.nih.gov/pubmed/31540483
http://dx.doi.org/10.3390/ma12183031
Descripción
Sumario:The design of a metasurface with low radar cross section (RCS) property is presented in this paper. The low scattering of the metasurface is achieved by applying the artificial magnetic conductor (AMC) unit cells in three different configurations. Two different AMC unit cells with an effective phase difference of 180 ± 37° are first designed to analyze the out of phase reflection in a wideband frequency range from 5.9 to 12.2 GHz. Then, the unit cells are placed in a chessboard-like configuration, newly constructed rotated rectangular-shaped configuration, and optimized configuration to study and compare the RCS reduction performance. All designs of the metasurface with different configurations show obvious RCS reduction as compared with the metallic plate of the same size. However, the relative bandwidth of the optimized metasurface is larger than the chessboard-like configuration and rotated rectangular-shaped configuration. To certify the results of the simulations, the metasurface with the optimized configuration is fabricated further to measure the RCS reduction bandwidth. The measured results are in good accordance with the simulated results. Therefore, the proposed metasurface can be a good option for applications where low RCS is desirable.