Cargando…
Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging
Rice lodging severely affects harvest yield. Traditional evaluation methods and manual on-site measurement are found to be time-consuming, labor-intensive, and cost-intensive. In this study, a new method for rice lodging assessment based on a deep learning UNet (U-shaped Network) architecture was pr...
Autores principales: | Zhao, Xin, Yuan, Yitong, Song, Mengdie, Ding, Yang, Lin, Fenfang, Liang, Dong, Zhang, Dongyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766838/ https://www.ncbi.nlm.nih.gov/pubmed/31500150 http://dx.doi.org/10.3390/s19183859 |
Ejemplares similares
-
Wheat lodging extraction using Improved_Unet network
por: Yu, Jun, et al.
Publicado: (2022) -
Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning
por: Bellis, Emily S., et al.
Publicado: (2022) -
Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery
por: Hong, Suk-Ju, et al.
Publicado: (2019) -
Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral Image
por: Sun, Qian, et al.
Publicado: (2019) -
Automatic instance segmentation of orchard canopy in unmanned aerial vehicle imagery using deep learning
por: Zhang, Weirong, et al.
Publicado: (2022)