Cargando…

Correlative Electrochemical Microscopy of Li‐Ion (De)intercalation at a Series of Individual LiMn(2)O(4) Particles

The redox activity (Li‐ion intercalation/deintercalation) of a series of individual LiMn(2)O(4) particles of known geometry and (nano)structure, within an array, is determined using a correlative electrochemical microscopy strategy. Cyclic voltammetry (current–voltage curve, I–E) and galvanostatic c...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Binglin, Yule, Lewis C., Daviddi, Enrico, Bentley, Cameron L., Unwin, Patrick R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766856/
https://www.ncbi.nlm.nih.gov/pubmed/30724004
http://dx.doi.org/10.1002/anie.201814505
_version_ 1783454783533744128
author Tao, Binglin
Yule, Lewis C.
Daviddi, Enrico
Bentley, Cameron L.
Unwin, Patrick R.
author_facet Tao, Binglin
Yule, Lewis C.
Daviddi, Enrico
Bentley, Cameron L.
Unwin, Patrick R.
author_sort Tao, Binglin
collection PubMed
description The redox activity (Li‐ion intercalation/deintercalation) of a series of individual LiMn(2)O(4) particles of known geometry and (nano)structure, within an array, is determined using a correlative electrochemical microscopy strategy. Cyclic voltammetry (current–voltage curve, I–E) and galvanostatic charge/discharge (voltage–time curve, E–t) are applied at the single particle level, using scanning electrochemical cell microscopy (SECCM), together with co‐location scanning electron microscopy that enables the corresponding particle size, morphology, crystallinity, and other factors to be visualized. This study identifies a wide spectrum of activity of nominally similar particles and highlights how subtle changes in particle form can greatly impact electrochemical properties. SECCM is well‐suited for assessing single particles and constitutes a combinatorial method that will enable the rational design and optimization of battery electrode materials.
format Online
Article
Text
id pubmed-6766856
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-67668562019-10-01 Correlative Electrochemical Microscopy of Li‐Ion (De)intercalation at a Series of Individual LiMn(2)O(4) Particles Tao, Binglin Yule, Lewis C. Daviddi, Enrico Bentley, Cameron L. Unwin, Patrick R. Angew Chem Int Ed Engl Communications The redox activity (Li‐ion intercalation/deintercalation) of a series of individual LiMn(2)O(4) particles of known geometry and (nano)structure, within an array, is determined using a correlative electrochemical microscopy strategy. Cyclic voltammetry (current–voltage curve, I–E) and galvanostatic charge/discharge (voltage–time curve, E–t) are applied at the single particle level, using scanning electrochemical cell microscopy (SECCM), together with co‐location scanning electron microscopy that enables the corresponding particle size, morphology, crystallinity, and other factors to be visualized. This study identifies a wide spectrum of activity of nominally similar particles and highlights how subtle changes in particle form can greatly impact electrochemical properties. SECCM is well‐suited for assessing single particles and constitutes a combinatorial method that will enable the rational design and optimization of battery electrode materials. John Wiley and Sons Inc. 2019-02-21 2019-03-26 /pmc/articles/PMC6766856/ /pubmed/30724004 http://dx.doi.org/10.1002/anie.201814505 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Tao, Binglin
Yule, Lewis C.
Daviddi, Enrico
Bentley, Cameron L.
Unwin, Patrick R.
Correlative Electrochemical Microscopy of Li‐Ion (De)intercalation at a Series of Individual LiMn(2)O(4) Particles
title Correlative Electrochemical Microscopy of Li‐Ion (De)intercalation at a Series of Individual LiMn(2)O(4) Particles
title_full Correlative Electrochemical Microscopy of Li‐Ion (De)intercalation at a Series of Individual LiMn(2)O(4) Particles
title_fullStr Correlative Electrochemical Microscopy of Li‐Ion (De)intercalation at a Series of Individual LiMn(2)O(4) Particles
title_full_unstemmed Correlative Electrochemical Microscopy of Li‐Ion (De)intercalation at a Series of Individual LiMn(2)O(4) Particles
title_short Correlative Electrochemical Microscopy of Li‐Ion (De)intercalation at a Series of Individual LiMn(2)O(4) Particles
title_sort correlative electrochemical microscopy of li‐ion (de)intercalation at a series of individual limn(2)o(4) particles
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766856/
https://www.ncbi.nlm.nih.gov/pubmed/30724004
http://dx.doi.org/10.1002/anie.201814505
work_keys_str_mv AT taobinglin correlativeelectrochemicalmicroscopyofliiondeintercalationataseriesofindividuallimn2o4particles
AT yulelewisc correlativeelectrochemicalmicroscopyofliiondeintercalationataseriesofindividuallimn2o4particles
AT daviddienrico correlativeelectrochemicalmicroscopyofliiondeintercalationataseriesofindividuallimn2o4particles
AT bentleycameronl correlativeelectrochemicalmicroscopyofliiondeintercalationataseriesofindividuallimn2o4particles
AT unwinpatrickr correlativeelectrochemicalmicroscopyofliiondeintercalationataseriesofindividuallimn2o4particles