Cargando…
Pedestrian Positioning Using a Double-Stacked Particle Filter in Indoor Wireless Networks
The indoor pedestrian positioning methods are affected by substantial bias and errors because of the use of cheap microelectromechanical systems (MEMS) devices (e.g., gyroscope and accelerometer) and the users’ movements. Moreover, because radio-frequency (RF) signal values are changed drastically d...
Autores principales: | Sung, Kwangjae, Lee, Hyung Kyu, Kim, Hwangnam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766917/ https://www.ncbi.nlm.nih.gov/pubmed/31510099 http://dx.doi.org/10.3390/s19183907 |
Ejemplares similares
-
Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter
por: Sung, Kwangjae, et al.
Publicado: (2018) -
Pedestrian Positioning Using an Enhanced Ensemble Transform Kalman Filter
por: Sung, Kwangjae
Publicado: (2023) -
Map-Based Indoor Pedestrian Navigation Using an Auxiliary Particle Filter
por: Yu, Chunyang, et al.
Publicado: (2017) -
Combining a Modified Particle Filter Method and Indoor Magnetic Fingerprint Map to Assist Pedestrian Dead Reckoning for Indoor Positioning and Navigation
por: Ning, Fang-Shii, et al.
Publicado: (2019) -
Grid-Based Bayesian Filtering Methods for Pedestrian Dead Reckoning Indoor Positioning Using Smartphones
por: Opiela, Miroslav, et al.
Publicado: (2020)