Cargando…
Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets
A new device and methodology for vertically coupling confocal Raman microscopy with optical tweezers for the in situ physico- and photochemical studies of individual microdroplets (Ø ≤ 10 µm) levitated in air is presented. The coupling expands the spectrum of studies performed with individual partic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766935/ https://www.ncbi.nlm.nih.gov/pubmed/31547361 http://dx.doi.org/10.3390/molecules24183325 |
_version_ | 1783454801537794048 |
---|---|
author | Gómez Castaño, Jovanny A. Boussekey, Luc Verwaerde, Jean P. Moreau, Myriam Tobón, Yeny A. |
author_facet | Gómez Castaño, Jovanny A. Boussekey, Luc Verwaerde, Jean P. Moreau, Myriam Tobón, Yeny A. |
author_sort | Gómez Castaño, Jovanny A. |
collection | PubMed |
description | A new device and methodology for vertically coupling confocal Raman microscopy with optical tweezers for the in situ physico- and photochemical studies of individual microdroplets (Ø ≤ 10 µm) levitated in air is presented. The coupling expands the spectrum of studies performed with individual particles using laser tweezers Raman spectroscopy (LTRS) to photochemical processes and spatially resolved Raman microspectroscopy on airborne aerosols. This is the first study to demonstrate photochemical studies and Raman mapping on optically levitated droplets. By using this configuration, photochemical reactions in aerosols of atmospheric interest can be studied on a laboratory scale under realistic conditions of gas-phase composition and relative humidity. Likewise, the distribution of photoproducts within the drop can also be observed with this setup. The applicability of the coupling system was tested by studying the photochemical behavior of microdroplets (5 µm < Ø < 8 µm) containing an aqueous solution of sodium nitrate levitated in air and exposed to narrowed UV radiation (254 ± 25 nm). Photolysis of the levitated NaNO(3) microdroplets presented photochemical kinetic differences in comparison with larger NaNO(3) droplets (40 µm < Ø < 80 µm), previously photolyzed using acoustic traps, and heterogeneity in the distribution of the photoproducts within the drop. |
format | Online Article Text |
id | pubmed-6766935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67669352019-10-02 Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets Gómez Castaño, Jovanny A. Boussekey, Luc Verwaerde, Jean P. Moreau, Myriam Tobón, Yeny A. Molecules Article A new device and methodology for vertically coupling confocal Raman microscopy with optical tweezers for the in situ physico- and photochemical studies of individual microdroplets (Ø ≤ 10 µm) levitated in air is presented. The coupling expands the spectrum of studies performed with individual particles using laser tweezers Raman spectroscopy (LTRS) to photochemical processes and spatially resolved Raman microspectroscopy on airborne aerosols. This is the first study to demonstrate photochemical studies and Raman mapping on optically levitated droplets. By using this configuration, photochemical reactions in aerosols of atmospheric interest can be studied on a laboratory scale under realistic conditions of gas-phase composition and relative humidity. Likewise, the distribution of photoproducts within the drop can also be observed with this setup. The applicability of the coupling system was tested by studying the photochemical behavior of microdroplets (5 µm < Ø < 8 µm) containing an aqueous solution of sodium nitrate levitated in air and exposed to narrowed UV radiation (254 ± 25 nm). Photolysis of the levitated NaNO(3) microdroplets presented photochemical kinetic differences in comparison with larger NaNO(3) droplets (40 µm < Ø < 80 µm), previously photolyzed using acoustic traps, and heterogeneity in the distribution of the photoproducts within the drop. MDPI 2019-09-12 /pmc/articles/PMC6766935/ /pubmed/31547361 http://dx.doi.org/10.3390/molecules24183325 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gómez Castaño, Jovanny A. Boussekey, Luc Verwaerde, Jean P. Moreau, Myriam Tobón, Yeny A. Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets |
title | Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets |
title_full | Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets |
title_fullStr | Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets |
title_full_unstemmed | Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets |
title_short | Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets |
title_sort | enhancing double-beam laser tweezers raman spectroscopy (ltrs) for the photochemical study of individual airborne microdroplets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766935/ https://www.ncbi.nlm.nih.gov/pubmed/31547361 http://dx.doi.org/10.3390/molecules24183325 |
work_keys_str_mv | AT gomezcastanojovannya enhancingdoublebeamlasertweezersramanspectroscopyltrsforthephotochemicalstudyofindividualairbornemicrodroplets AT boussekeyluc enhancingdoublebeamlasertweezersramanspectroscopyltrsforthephotochemicalstudyofindividualairbornemicrodroplets AT verwaerdejeanp enhancingdoublebeamlasertweezersramanspectroscopyltrsforthephotochemicalstudyofindividualairbornemicrodroplets AT moreaumyriam enhancingdoublebeamlasertweezersramanspectroscopyltrsforthephotochemicalstudyofindividualairbornemicrodroplets AT tobonyenya enhancingdoublebeamlasertweezersramanspectroscopyltrsforthephotochemicalstudyofindividualairbornemicrodroplets |