Cargando…
Non-Enzymatic Electrochemical Sensor Based on Sliver Nanoparticle-Decorated Carbon Nanotubes
The authors report a non-enzymatic electrochemical sensor based on a sliver nanoparticle-decorated carbon nanotube (AgNPs-MWCNT). Highly-dispersed AgNPs were loaded on the MWCNT surface though a simple and facile two-step method. The morphology, components, and the size of the AgNPs-MWCNT nanocompos...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766966/ https://www.ncbi.nlm.nih.gov/pubmed/31546874 http://dx.doi.org/10.3390/molecules24183411 |
Sumario: | The authors report a non-enzymatic electrochemical sensor based on a sliver nanoparticle-decorated carbon nanotube (AgNPs-MWCNT). Highly-dispersed AgNPs were loaded on the MWCNT surface though a simple and facile two-step method. The morphology, components, and the size of the AgNPs-MWCNT nanocomposite were characterized by transmission electron microscopy, X-ray diffraction, and ICP analysis. Benefitting from the synergistic effect between the AgNPs and MWCNT, the AgNPs-MWCNT nanocomposite exhibited high electrocatalytic activity for H(2)O(2); the AgNPs-MWCNT electrochemical sensor was prepared by coating the AgNPs-MWCNT nanocomposite on a glassy carbon electrode, and it showed a fast and sensitive response to H(2)O(2) with a linear range of 1 to 1000 μM. The detection limit was 0.38 μM (S/N = 3). The sensor was applied to detect H(2)O(2) in spiked human blood serum samples with satisfactory results. |
---|