Cargando…
Bias through selective inclusion and attrition: Representativeness when comparing provider performance with routine outcome monitoring data
BACKGROUND: Observational research based on routine outcome monitoring is prone to missing data, and outcomes can be biased due to selective inclusion at baseline or selective attrition at posttest. As patients with complete data may not be representative of all patients of a provider, missing data...
Autores principales: | de Beurs, Edwin, Warmerdam, Lisanne, Twisk, Jos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766975/ https://www.ncbi.nlm.nih.gov/pubmed/30882974 http://dx.doi.org/10.1002/cpp.2364 |
Ejemplares similares
-
Internet-Based Treatment for Adults with Depressive Symptoms: Randomized Controlled Trial
por: Warmerdam, Lisanne, et al.
Publicado: (2008) -
From habits of attrition to modes of inclusion: enhancing the role of private practitioners in routine disease surveillance
por: Phalkey, Revati K., et al.
Publicado: (2017) -
Posttreatment Attrition and Its Predictors, Attrition Bias, and Treatment Efficacy of the Anxiety Online Programs
por: AL-Asadi, Ali M, et al.
Publicado: (2014) -
The impact of attrition on the representativeness of cohort studies of older people
por: Brilleman, Samuel L, et al.
Publicado: (2010) -
When does attrition lead to biased estimates of alcohol consumption? Bias analysis for loss to follow‐up in 30 longitudinal cohorts
por: Keyes, Katherine M., et al.
Publicado: (2020)