Cargando…

Phenolic Acids in Jerusalem Artichoke (Helianthus tuberosus L.): Plant Organ Dependent Antioxidant Activity and Optimized Extraction from Leaves

Phenolic acids including chlorogenic acids are major polyphenolic compounds found in Jerusalem artichoke (Helianthus tuberosus L.). The plant itself is an emerging biorefinery crop due to the inulin-rich tubers, a bioethanol feedstock, but the aerial parts represent a rich source of bioactive compou...

Descripción completa

Detalles Bibliográficos
Autores principales: Showkat, Muhammad Mir, Falck-Ytter, Anne Bergljot, Strætkvern, Knut Olav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766983/
https://www.ncbi.nlm.nih.gov/pubmed/31510058
http://dx.doi.org/10.3390/molecules24183296
Descripción
Sumario:Phenolic acids including chlorogenic acids are major polyphenolic compounds found in Jerusalem artichoke (Helianthus tuberosus L.). The plant itself is an emerging biorefinery crop due to the inulin-rich tubers, a bioethanol feedstock, but the aerial parts represent a rich source of bioactive compounds. We have determined the level of major phenolic acids in extracts of four plant organs: tuber, leaf, flower, and stem. Employing three heating conditions (20 °C, 60 °C, and microwaving), corrected total phenolic content (TPC) was highest in the leaves (4.5–5.7 mg gallic acid equivalents g(−1) dry substance), followed by flower (2.1–2.9), tuber (0.9–1.4), and lowest in stem extracts (0.1–0.2). A previously overlooked interference of the Folin–Ciocalteu assay, namely a signal contribution from ascorbic acid, caused overestimation of TPC in various organs ranging from 65% to 94%. Radical scavenging activity of extracts correlated significantly with TPC, both on corrected (R(2) = 0.841) and uncorrected (R(2) = 0.884) values. Out of the identified phenolic acids determined by quantitative HPLC-UV analysis, chlorogenic and dicaffeoylquinic acids accounted for 72–82% of corrected TPC in leaf and tuber extracts. Optimization of leaf extraction was tested in a 2(3)-factorial Central Composite Face (CCF) design. Temperature was the most important model term, and a solvent strength of less than 50% ethanol promoted the highest TPC yields. Further developments in extraction processing of crop residues may open avenues for improving the utilization of Jerusalem artichoke in valuable products.