Cargando…

A Smartphone-Based Whole-Cell Array Sensor for Detection of Antibiotics in Milk

We present an integral smartphone-based whole-cell biosensor, LumiCellSense (LCS), which incorporates a 16-well biochip with an oxygen permeable coating, harboring bioluminescent Escherichia coli bioreporter cells, a macro lens, a lens barrel, a metal heater tray, and a temperature controller, enclo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Mei-Yi, Kao, Wei-Chen, Belkin, Shimshon, Cheng, Ji-Yen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767005/
https://www.ncbi.nlm.nih.gov/pubmed/31505815
http://dx.doi.org/10.3390/s19183882
Descripción
Sumario:We present an integral smartphone-based whole-cell biosensor, LumiCellSense (LCS), which incorporates a 16-well biochip with an oxygen permeable coating, harboring bioluminescent Escherichia coli bioreporter cells, a macro lens, a lens barrel, a metal heater tray, and a temperature controller, enclosed in a light-impermeable case. The luminescence emitted by the bioreporter cells in response to the presence of the target chemicals is imaged by the phone’s camera, and a dedicated phone-embedded application, LCS_Logger, is employed to calculate photon emission intensity and plot it in real time on the device’s screen. An alert is automatically given when light intensity increases above the baseline, indicating the presence of the target. We demonstrate the efficacy of this system by the detection of residues of an antibiotic, ciprofloxacin (CIP), in whole milk, with a detection threshold of 7.2 ng/mL. This value is below the allowed maximum as defined by European Union regulations.