Cargando…
Low Resource Complexity R-peak Detection Based on Triangle Template Matching and Moving Average Filter
A novel R-peak detection algorithm suitable for wearable electrocardiogram (ECG) devices is proposed with four objectives: robustness to noise, low latency processing, low resource complexity, and automatic tuning of parameters. The approach is a two-pronged algorithm comprising (1) triangle templat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767021/ https://www.ncbi.nlm.nih.gov/pubmed/31527502 http://dx.doi.org/10.3390/s19183997 |
Sumario: | A novel R-peak detection algorithm suitable for wearable electrocardiogram (ECG) devices is proposed with four objectives: robustness to noise, low latency processing, low resource complexity, and automatic tuning of parameters. The approach is a two-pronged algorithm comprising (1) triangle template matching to accentuate the slope information of the R-peaks and (2) a single moving average filter to define a dynamic threshold for peak detection. The proposed algorithm was validated on eight ECG public databases. The obtained results not only presented good accuracy, but also low resource complexity, all of which show great potential for detection R-peaks in ECG signals collected from wearable devices. |
---|