Cargando…
Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study
BACKGROUND: Grading of meningiomas is important in the choice of the most effective treatment for each patient. PURPOSE: To determine the diagnostic accuracy of a deep convolutional neural network (DCNN) in the differentiation of the histopathological grading of meningiomas from MR images. STUDY TYP...
Autores principales: | Banzato, Tommaso, Causin, Francesco, Della Puppa, Alessandro, Cester, Giacomo, Mazzai, Linda, Zotti, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767062/ https://www.ncbi.nlm.nih.gov/pubmed/30896065 http://dx.doi.org/10.1002/jmri.26723 |
Ejemplares similares
-
A methodological approach for deep learning to distinguish between meningiomas and gliomas on canine MR-images
por: Banzato, Tommaso, et al.
Publicado: (2018) -
Relationship of diagnostic accuracy of renal cortical echogenicity with renal histopathology in dogs and cats, a quantitative study
por: Banzato, Tommaso, et al.
Publicado: (2017) -
Correlation of renal histopathology with renal echogenicity in dogs and cats: an ex-vivo quantitative study
por: Zotti, Alessandro, et al.
Publicado: (2015) -
Diagnostic Accuracy of Delayed Phase Post Contrast Computed Tomographic Images in the Diagnosis of Focal Liver Lesions in Dogs: 69 Cases
por: Burti, Silvia, et al.
Publicado: (2021) -
Corrigendum: Diagnostic Accuracy of Delayed Phase Post Contrast Computed Tomographic Images in the Diagnosis of Focal Liver Lesions in Dogs: 69 Cases
por: Burti, Silvia, et al.
Publicado: (2021)